

410 Sunset Drive

Functional Servicing Report

Project Location:

410 Sunset Drive Central Elgin, Ontario

Prepared for:

Quincy Developments 1055 Fanshawe Park Road London, ON N6G 0W7

Prepared by:

MTE Consultants 123 St. George Street London, ON N6A 3A1

July 11, 2022 MTE File No.: 51252-100

Engineers, Scientists, Surveyors.

Contents

1.0 1.1		uction	
1.2	Bac	kground Information	3
2.0 2.1		ng Conditions -Development Conditions	
3.0 4.0 4.1	Munic	sed Development ipal Servicing itary Servicing	5
4.2	Wat	ter Distribution	5
4.3	Stor	rmwater Management	5
4.	3.1	Criteria	5
4.	3.2	Methodology	6
4.	3.3	Allowable Pre-Development Flow Rate	6
4.	3.4	Quantity Controls	7
4.	3.5	Quality Controls	7
5.0	Summ	nary	7

Appendices

Appendix A	EDGE Design Report
Appendix B	SWM, Sanitary and Water Supply Calculations
Appendix C	Stormceptor Sizing Reports

1.0 Introduction

1.1 Overview

MTE Consultants Inc. (MTE) was retained by Quincy Developments, to prepare a Functional Servicing Report (FSR) in support of Official Plan Amendment (OPA) and Zoning By-law Amendment (ZBA). The 410 Sunset Drive properties are collectively referred to herein as the 'Subject Lands'.

The Subject lands are located in the Municipality of Central Elgin, legally, lot 3, concession 6, geographic Township of Yarmouth. The subject site consists of 1.86ha generally bounded by Sunset Drive to the east, Karen Street to the south, CN Railway to the west, and exiting commercial property to the north.

A Preliminary Design Report for the proposed development has been prepared by EDGE Architects Ltd. (June 30, 2022) and forms the basis for this functional servicing report. The Site Plan includes two residential buildings, a 4-storey building and a 6-storey building with a total of approximately 177 units, landscaped areas, interior and exterior amenity spaces, a total of 215 proposed parking spaces, and an existing municipal sanitary pumping station.

This report recommends a servicing strategy for the proposed Subject Lands and outlines how the site plan can be developed on full municipal services, including sanitary sewers, domestic water distribution, and storm sewers. The City of St. Thomas Design Guidelines Manual (2022) was used for the design criteria.

The Site Plan will be constructed in two phases and this report addresses the full buildout of the development (Phase 2) support of OPA and ZBA.

1.2 Background Information

This report should be read in conjunction with the following supporting documents:

- Sunset Road Rehabilitation, Sheet 23 to 26, by Spriet Associates, dated October 2007;
- Norman Subdivision Drains North, drawings 1 to 6, by Spriet Associates, dated February 1991;
- Sunset Drive Wastewater Pumping Station and Forcemain, Sheet R001 and PP004, by Dillon Consulting, dated December 2009;

2.0 Existing Conditions

2.1 Pre-Development Conditions

The Subject Lands are ultimately located within the Kettle Creek Watershed. Subject lands are split in two watersheds, the south watershed drains to Norman Subdivision Drain, and the north watershed is collected in the existing 1050mmØ storm sewer conveying flows north to an existing drain.

The subject lands currently consist of landscaped areas, a two-story office building, a right of way, a parking lot and the municipal sanitary pumping station.

3.0 Proposed Development

The Site Plan consists of the following:

- Two residential buildings, a 4-storey and a 6-storey building;
- Parking lot with a total of 215 parking spaces;
- Existing municipal sanitary pumping station facilities;
- Landscaped areas, common outdoor amenity space;
- Walkways, emergency access;
- Fire routes;

The existing two-story office building will be demolished in Phase 2 of construction.

The 4-storey building consists of approximately 105 units, and the 6-storey building consists of approximately 72 units, bringing the site total to 177 units. Applying the City's criteria of 3 people/unit, the total estimated population is 531 people.

Please refer to **Appendix A** - **EDGE** – **Design Report**, dated June 30, 2022.

4.0 Municipal Servicing

4.1 Sanitary Servicing

Existing sanitary infrastructure consists of the municipal sanitary pumping station in the southeast corner of the site, an abandoned 375mmØ sanitary sewer in the subject lands, and a municipal 300mmØ sanitary sewer along the south border of the site conveying flows west to east to the existing pumping station.

Manhole 'A' has a sanitary stub on the north side which can be used to tie in the sanitary flows from the subject lands. A connection can be made anywhere upstream of the pumping station as the City has indicated that there is capacity in the pumping station to service the development.

Based on the preliminary number of units and the total population estimate, the peak expected sanitary flows from the subject lands are 6.27 l/s. Please refer to **Appendix B** for the detailed sanitary flow calculations.

4.2 Water Distribution

Existing water supply infrastructure consists of the municipal 300mmØ watermain on Sunset Drive.

Both residential buildings can be serviced with individual connections to the 300 mm watermain on Sunset Drive.

Based on the preliminary number of units and the total population estimate, the total site average day demand is 2.77 l/s, total max day demand is 9.68 l/s, and the total peak hour demand is 21.57 l/s. Please refer to **Appendix B** for the detailed water supply demand calculations. Based on the peak hour demand for the preliminary number of units and population, it is proposed to service each building with a 100mm connection.

The building is anticipated to be protected with sprinklers and as a result the fire flow requirements are as follows.

 This development has a light hazard occupancy classification for which the acceptable flow at the base of the riser (including hose stream allowance) is 750 gpm (47.33 L/s) per NFPA 13-Table 11.2.2.1. This flow rate is considered conservative and is intended to be higher than the actual sprinkler design requirements when they become available. This will need to be verified by the development's mechanical engineer once the information is available.

Specifics of the fire protection, final connection sizes, and the available water supply system pressures will be analyzed at the detailed design stage.

4.3 Stormwater Management

4.3.1 Criteria

The stormwater management design criteria for the subject site, as established by the City are as follows:

- Attenuation of the post-development peak flows for the 5 and 100-year storm events to the pre-development flow rates;
- Implementation of water quality controls.

MTE Consultants | 51252-100 | 410 Sunset Drive | July 11, 2022

4.3.2 Methodology

In order to successfully complete the stormwater management design for this site, the following specific tasks were undertaken:

- Calculated the allowable runoff rates using Rational Method for the 5-year and 100-year predevelopment conditions;
- Determine the Site's runoff coefficient;
- Calculated post-development runoff using Rational Method;
- Sized orifice to attain the required storage for runoff control;

4.3.3 Allowable Pre-Development Flow Rate

The allowable pre-development flow rate was calculated based on the existing conditions, breaking down the area into two watersheds, watershed A1 draining to the existing 1050mmØ storm sewer conveying flows north, and watershed A2 draining south to the Norman Subdivision Drain. MTE completed area take off measurements based on the existing conditions. Surfaces and approximate cumulative areas for Area A1 are summarized as follows:

Impervious Area:	2,659 m ²
Pervious Area:	5,393 m ²
Total:	8,052 m ²

Surfaces and approximate cumulative areas for Area A2 are summarized as follows:

Impervious Area:	891 m ²
Pervious Area:	9690 m ²
Total:	10521 m ²

Applying a runoff coefficient of 0.25 for pervious surfaces and 0.9 for the impervious surfaces, weighted runoff coefficients of 0.46 for Area A1 and 0.26 for Area A2 were calculated.

Based on the pre-development runoff coefficients and using a Time of Concentration (Tc) of 15 minutes per City's criteria, the allowable pre-development 5-year flow rate for Area A1 was calculated to be approximately 85.25 l/s. Using the same area, 'c' value, and Tc, the 100-year design flow rate was calculated to be 141.16 l/s.

Based on the pre-development runoff coefficients and using a Time of Concentration (Tc) of 15 minutes per City's criteria, the allowable pre-development 5-year flow rate for Area A2 was calculated to be approximately 61.20 l/s. Using the same area, 'c' value, and Tc, the 100-year design flow rate was calculated to be 101.34 l/s.

Flows from the post-development Area A3, that generally matches the pre-development Area A1, will be controlled and conveyed to the same 1050mmØ existing storm sewer. MTE completed area take off measurements based on the proposed site plan. Surfaces and cumulative areas for Area A3 are summarized as follows:

Impervious Area:	5,332 m ²
Pervious Area:	2,640 m ²
Total:	7,972 m ²

Flows from the post-development Area A4, that generally matches the pre-development Area A2, will be controlled and conveyed to the same Norman Subdivision Drain south of the site.

MTE Consultants | 51252-100 | 410 Sunset Drive | July 11, 2022

MTE completed area take off measurements based on the proposed site plan. Surfaces and cumulative areas for Area A4 are summarized as follows:

Impervious Area:	6,381 m ²
Pervious Area:	4,219 m ²
Total:	7,972 m²

Applying a runoff coefficient of 0.25 for pervious surfaces and 0.9 for the impervious surfaces, weighted runoff coefficients of 0.68 for Area A3 and 0.64 for Area A4 were calculated.

As the proposed coefficient exceeds the pre-development coefficients, on-site storage will be required to attenuate flows from the 5 to 100-year events to design levels.

4.3.4 Quantity Controls

An orifice plate installed over the outlet of each post-development area are proposed to control flows from the site to the allowable 5-year flow rates for both post-development areas.

An extended rational method analysis was completed to determine the storage volume required to attenuate runoff from the 5 and 100-year event to the target release rates for Area A1 and Area A2, respectively. The analysis showed that approximately 90.82 m³ would be required in Area A3, and approximately 143.52 m³ would be required in Area A4. If during detailed design the total areas going to each existing outlet are revised these calculations will need to be updated to reflect any changes to the quantity storage requirements.

4.3.5 Quality Controls

Quality control for both post-development areas are proposed to be provided by OGS units sized to provide a minimum of 'Normal' level of quality control (70% TSS removal). Based on the size and coverage of the proposed site, a Stromceptor EFO4 was selected to provide quantity control for Area A3 and a Stormceptor EFO4 was selected to provide quantity control for area A4. Specifications for the proposed units are attached. Any changes to the proposed areas and/or imperviousness will require a re-assessment of the selected OGS unit.

5.0 Summary

The main findings of the Functional Servicing Report for the Subject Lands are:

- 1. Water Supply will be provided by two separate connections to the existing 300mmØ watermain on Sunset Drive.
- 2. Sanitary flows will be conveyed to the existing 300mmØ sanitary sewer on Karen Street which conveys flows east to the existing municipal sanitary pumping station.
- The existing site is split into two watersheds in the pre-development condition and the same split will be preserved in post-development. Flows will be controlled with orifice plates. 5-year to 100-year flows will be stored in the parking lot ponding areas. Quality control is proposed to be provided by OGS units, Stormceptor EFO4, for both postdevelopment areas.

We trust this meets your requirements. Should you have any questions or require anything further, please do not hesitate to contact the undersigned.

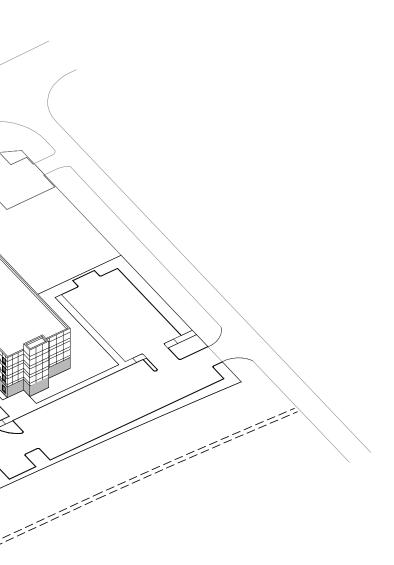
All of which is respectfully submitted;

MTE Consultants Inc.

Bogdan Pavlovic, MESc., P.Eng. Design Engineer 519-204-6510 ext. 2266 bpavlovic@mte85.com

M:\51252\100\Reports\51252-100 Servicing Report.doc

EDGE Design Report


ARCHITECTS LTD

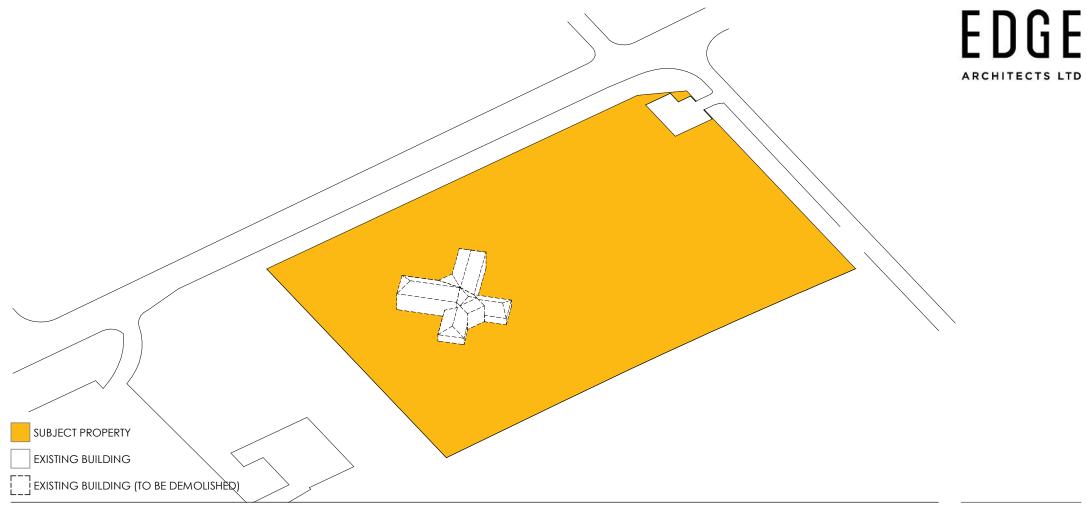
210-137 GLASGOW STREET KITCHENER, ON N2G 4X8

> info@edgeltd.ca www.edgeltd.ca

DESIGN REPORT

22005 - 410 SUNSET DR MULTI-RES - 2022.06.30

SITE CONTEXT / VIEW FROM SUNSET DR



SITE CONTEXT / VIEW FROM SUNSET DR & KAREN STREET

SITE CONTEXT / EXISTING MASSING

22005

PROJECT NAME

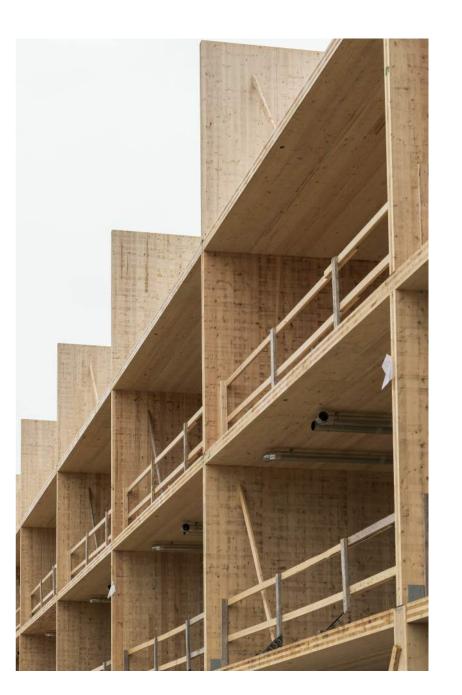
410 SUNSET DR MULTI-RES

410 SUNSET DR ST. THOMAS, ON DRAWING TITLE

SITE CONTEXT

SCALE ISSUED FOR N.T.S.

SCHEMATIC DESIGN

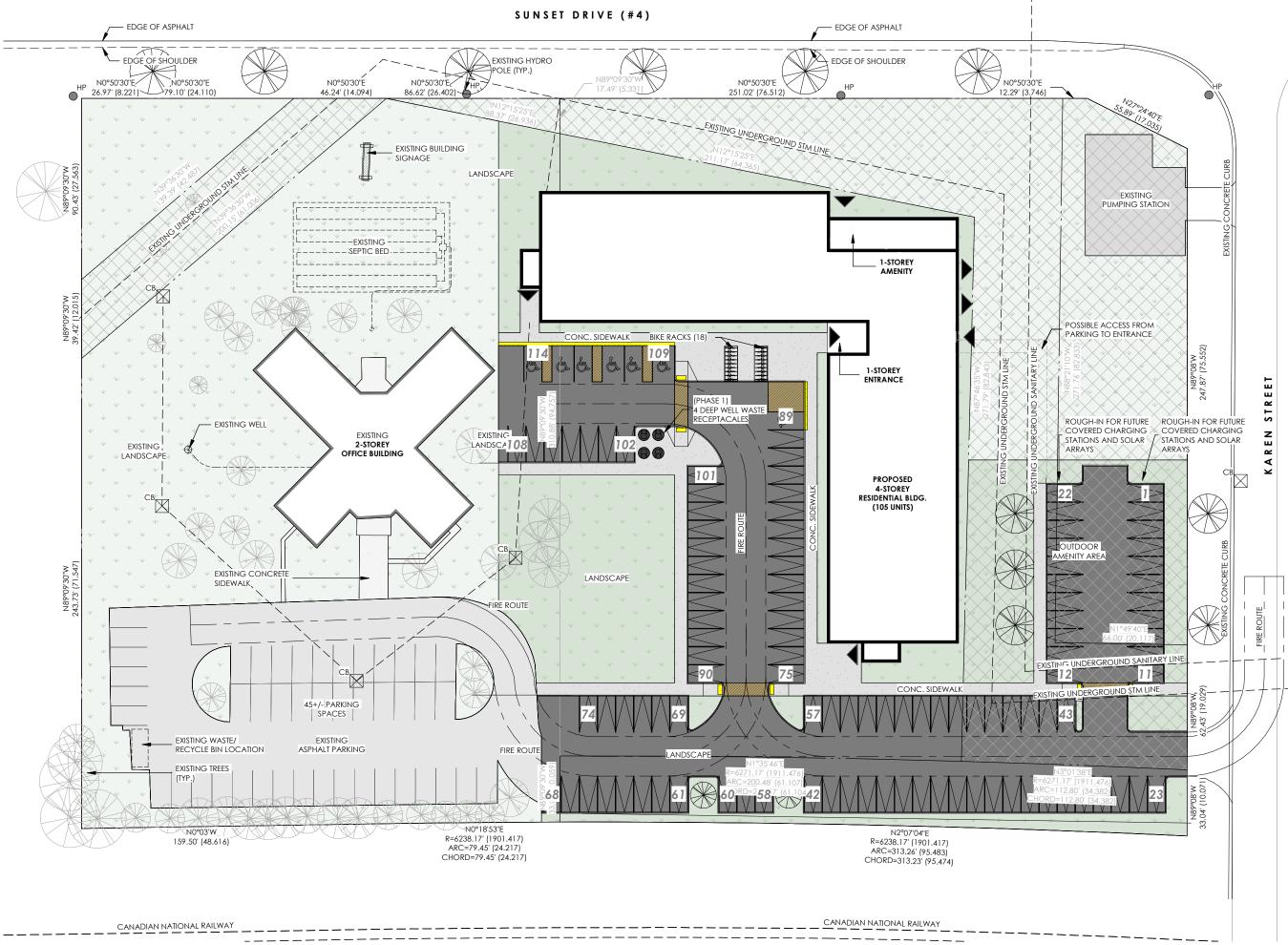


22005

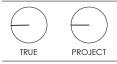
PROJECT NAME

410 SUNSET DR MULTI-RES

410 SUNSET DR ST. THOMAS, ON DRAWING TITLE


reference Images

SCALE


N.T.S.

SCHEMATIC DESIGN

DATE 2022.06.30

22005

PROJECT NAME

410 SUNSET DR **MULTI-RES**

410 SUNSET DR ST. THOMAS, ON

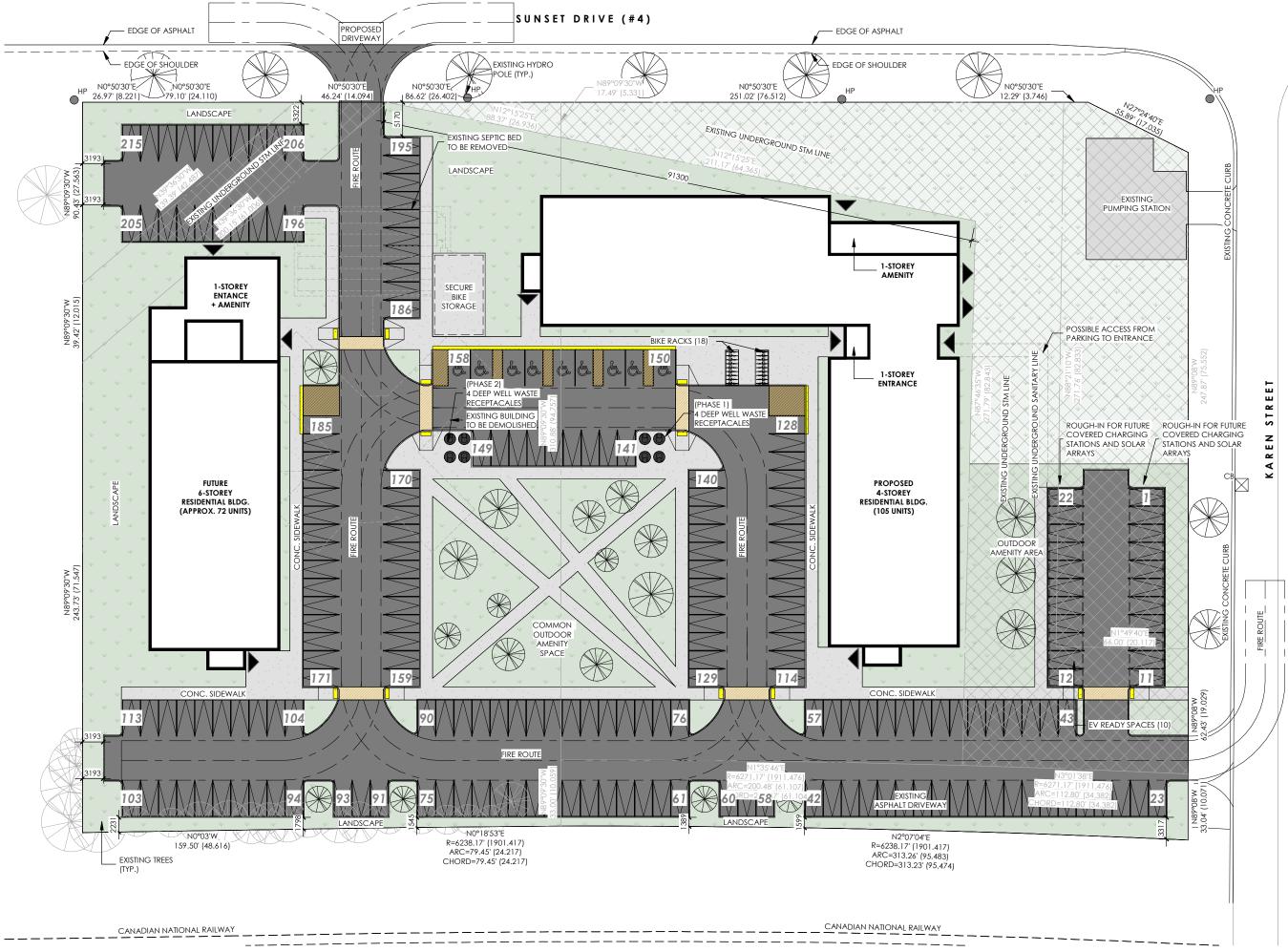
(PHASE 1)

SITE PLAN

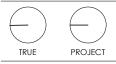
DRAWING TITLE

SCALE

DATE


1.3a

ISSUED FOR


SCHEMATIC DESIGN

1:550

2022.06.30

22005

PROJECT NAME

410 SUNSET DR

MULTI-RES

410 SUNSET DR ST. THOMAS, ON

SITE PLAN (PHASE 2)

DRAWING TITLE

1:550

2022.06.30

SCHEMATIC

SCALE ISSUED FOR

DESIGN

1.3b

DATE

ZONING DATA CHART

410 SUNSET DR. st. thomas, on

SITE PLAN - PHASE 1 & 2

PREPARED BY EDGE ARCHITECTS LTD. JUNE 30, 2022

ZONING COMPLIANCE CHART

CURRENT ZONING: OFFICE PROFESSIONAL (AS NOTED ON CENTRAL ELGIN OFFICIAL PLAN)

USE		EVELOPMENT + MIXED-USE	1
	REQUIRED	PHASE 1	PHASE 2
MINIMUM LOT AREA		GROSS SITE AREA: 18,574.0 m ² EASEMENT AREA: 4,594.4 m ² NET SITE AREA: 13,979.6 m²	GROSS SITE AREA: 18,574.0 m ² EASEMENT AREA: 4,594.4 m ² NET SITE AREA: 13,979.6 m ²
LOT FRONTAGE		104.7m (@ KAREN ST)	104.7m (@ KAREN ST)
FRONT YARD SETBACK (S) **		15.3m [BUILDING 1]	N/A [BUILDING 2]
INT. SIDE YARD SETBACK (W) **		27.5m [BUILDING 1]	24.4m [BUILDING 2]
EXT. SIDE YARD SETBACK (E) **		14.1m [BUILDING 1]	23.5m [BUILDING 2]
REAR YARD SETBACK (N) **		66.8m [BUILDING 1]	10.1m [BUILDING 2]
BUILDING COVERAGE		BUILDING 1: 2,152.2 m ² EXISTING BLDG: 642.5 m ² TOTAL= 2,794.7 m ²	BUILDING 1: 2,152.2 m ² BUILDING 2: 1,150.5 m ² TOTAL= 3,302.7 m ²
GROSS FLOOR AREA		BUILDING 1 GFA: 8458.5 m ²	BUILDING 1 GFA: 8458.5 m ² BUILDING 2 GFA: 5958.6 m ²
LANDSCAPED		9,356.73 m ² (EXCLUDES PUMPING STATION)	6,725.01 m ² (EXCLUDES PUMPING STATION)
PARKING		EXISTING PARKING: APPROX. 45 SPACES	PROPOSED PARKING: 215 SPACES
		PROPOSED PARKING: 114 SPACES	1.22 SPACES/ UNIT
		TOTAL PARKING: 159 SPACES	ASSUMING: BUILDING 1: 105 UNITS BUILDING 2: 72 UNITS
		1.09 SPACES/ UNIT + APPROX. 45 FOR OFFICE	
BARRIER-FREE PARKING		7 SPACES 3 TYPE A; 4 TYPE B	11 SPACES (PROVIDED) 4 TYPE A; 7 TYPE B

NOTE:

- PROPERTY BOUNDARY INFORMATION FROM SURVEY PLAN FROM 'DONALD I. HOUGHTON'; DATED: SEPTEMBER 19, 1990.

- EXISTING SITE CONDITION AND SITE CONTEXT FROM TOPOGRAPHICAL BASE PLAN FROM 'STANTEC'; DATED: JUNE 09, 2009.

** SETBACKS SHOWN ONLY FOR THE PROPOSED BUILDINGS

PROJECT NO.

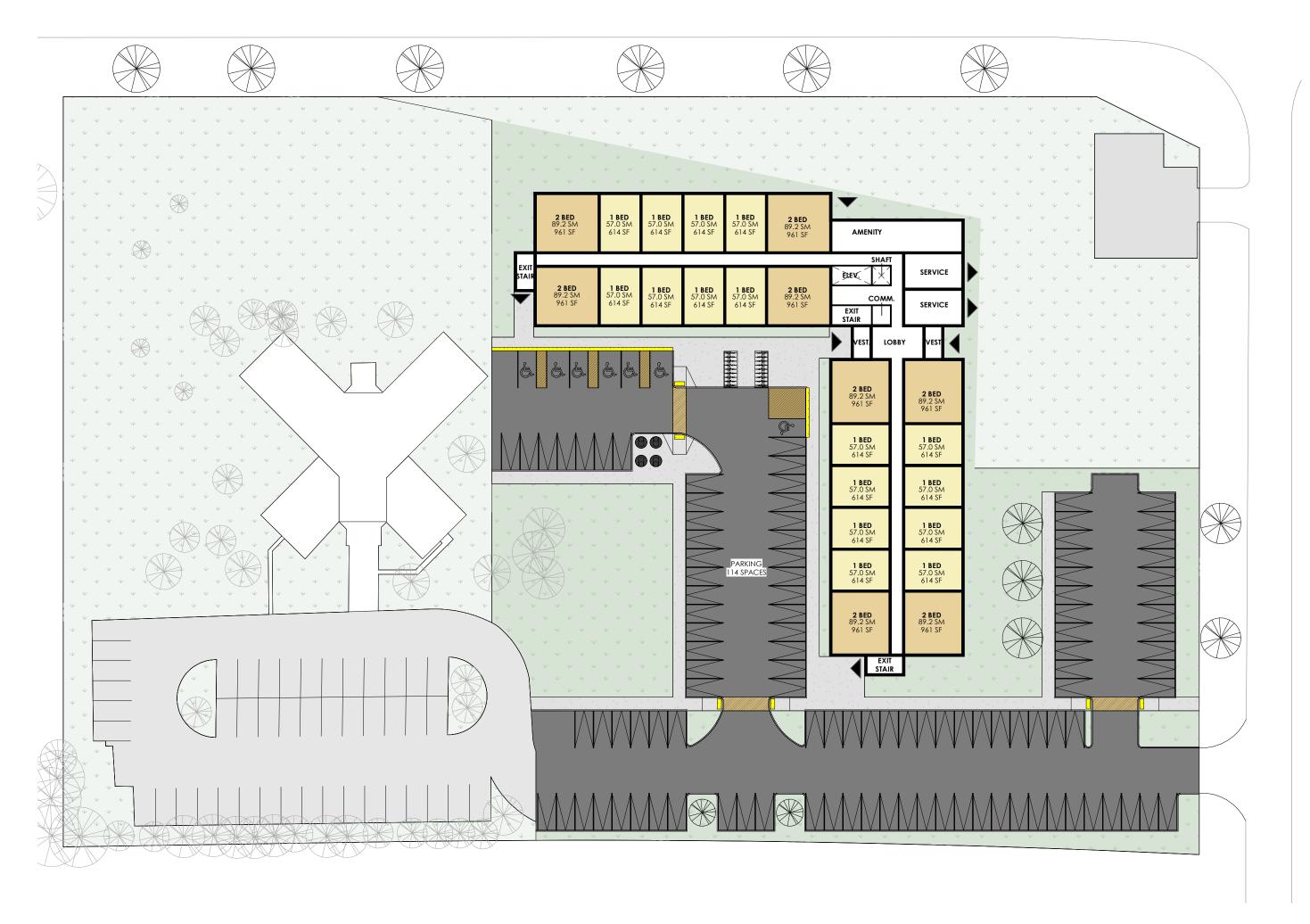
22005

PROJECT NAME

410 SUNSET DR **MULTI-RES**

410 SUNSET DR ST. THOMAS, ON

DRAWING TITLE


ZONING CHART - PHASE 1 & 2

SCALE ISSUED FOR N.T.S.

SCHEMATIC DESIGN

DATE	2022.06.30

1.3c

COMMON AREAS

SERVICE/ PARKING

STUDIO

1 BEDROOM

1 BEDROOM + DEN

2 BEDROOM

2 BEDROOM + DEN

3 BEDROOM

AMENITY

RETAIL

OFFICE

INSTITUTIONAL

PROJECT NO.

22005

PROJECT NAME

410 SUNSET DR MULTI-RES

410 SUNSET DR ST. THOMAS, ON

DRAWING TITLE

GROUND FLOOR PLAN DIAGRAM (PHASE 1)

SCALE

As indicated

ISSUED FOR

schematic design

DATE

2022.06.30

2.1

COMMON AREAS

SERVICE/ PARKING

STUDIO

1 BEDROOM

1 BEDROOM + DEN

2 BEDROOM

2 BEDROOM + DEN

3 BEDROOM

AMENITY

RETAIL

OFFICE

INSTITUTIONAL

PROJECT NO.

22005

PROJECT NAME

410 SUNSET DR **MULTI-RES**

410 SUNSET DR ST. THOMAS, ON

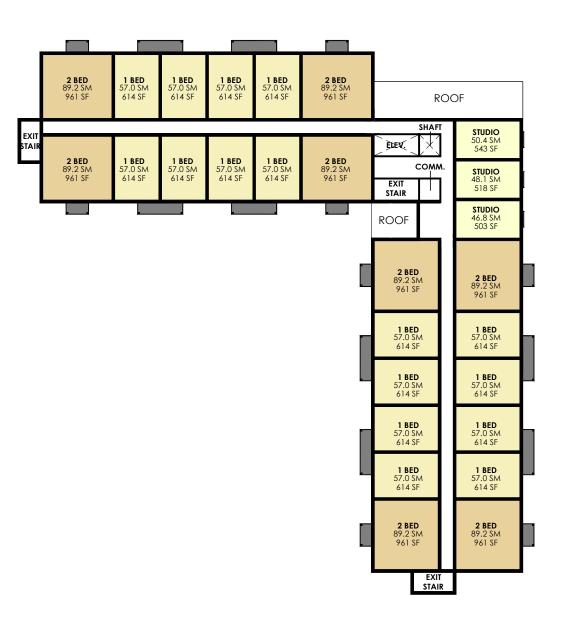
DRAWING TITLE

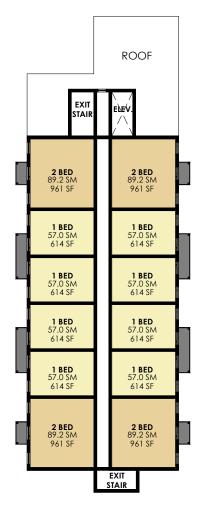
GROUND FLOOR PLAN DIAGRAM (PHASE 2)

SCALE

As indicated

ISSUED FOR


SCHEMATIC


DESIGN

DATE

2022.06.30

2.2

TYPICAL LEVEL 2-6 FLOOR PLAN (PHASE 2, BLDG 2)

1:500

TYPICAL LEVEL 2-4 FLOOR PLAN (PHASE 1 BLDG 1)

1:500

LEGEND

COMMON AREAS

SERVICE/ PARKING

STUDIO

1 BEDROOM

1 BEDROOM + DEN

2 BEDROOM

2 BEDROOM + DEN

3 BEDROOM

AMENITY

RETAIL

OFFICE

INSTITUTIONAL

PROJECT NO.

22005

PROJECT NAME

410 SUNSET DR MULTI-RES

410 SUNSET DR ST. THOMAS, ON

DRAWING TITLE

SCALE

ISSUED FOR

FLOOR PLAN DIAGRAM

TYPICAL

DESIGN

SCHEMATIC

2022.06.30

As indicated

2.3

DATE

SOUTH ELEVATION - PHASE 1 (D)

NORTH ELEVATION - PHASE 1 (D)

 	ED	
		. * *******************************
1 : 250	PROJECT NO. 22005	
 	project name 410 SUNS MULTI-RE	
	410 SUNSET DR ST. THOMAS, ON DRAWING TITLE ELEVATIC (PHASE 1	
	SCALE ISSUED FOR SCHEMA	1 : 250 TIC
		2022.06.30
1 : 250	3.1	

₽00F	 	
SIXTH FLOOR		
FIFTH FLOOR		
FOURTH FLOOR		
THIRD FLOOR		
SECOND FLOOR		

EAST ELEVATION - PHASE 1 (D)

 	 	 	ED	
 	 	 		· · · · · · · · · · · · · · · · · · ·
 	 	 1 : 250		· · · · · · · · · · · · · · · · · · ·
			PROJECT NO. 22005	
 	 	 	project name 410 SUNS MULTI-RES	
 			410 SUNSET DR ST. THOMAS, ON	
	 	 	drawing title ELEVATIO (PHASE 1)	
	 	 	SCALE	1:250
	 	 	ISSUED FOR SCHEMAT DESIGN	ΓIC
			DATE	2022.06.30
		 1:250	3.2	

+ ROOF	
SIXTH FLOOR	
FIFTH FLOOR	
- THIRD FLOOR	
SECOND FLOOR	

NORTH ELEVATION - PHASE 2 (D)

SOUTH ELEVATION - PHASE 2 (D)

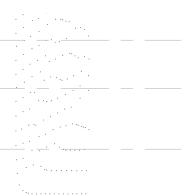
 	 	EDGE ARCHITECTS LTD
	1 : 250	

22000	
PROJECT NAME	· · · ·
410 SUNSET DR MULTI-RES	2
	a e tra
	** * * * *

PROJECT NO. 22005

410 SUNSET DR ST. THOMAS, ON DRAWING TITLE

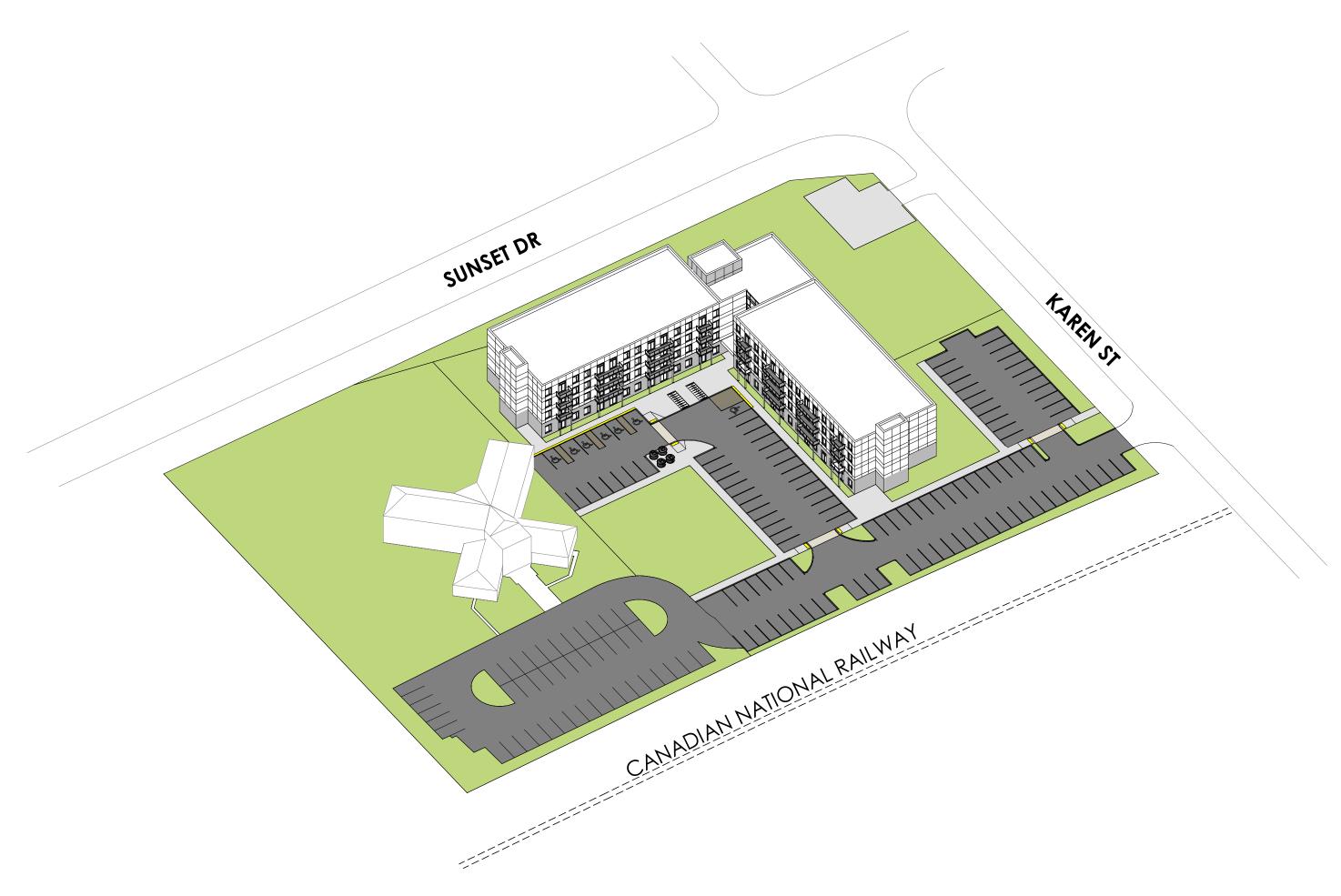
ELEVATIONS (PHASE 2)


SCALE	1 : 250
ISSUED FOR	
schemat design	ΓIC
DATE	2022.06.30
3.3	

Ψ16800		
+ FIFTH FLOOR	·	
FOURTH FLOOR		
+ THIRD FLOOR 7200		
+ SECOND FLOOR 4000		
WEST ELEVATION - PH	ASE 2 (D)	

+ROOF 20000

AST ELEVATION - PHA			
	19	- 	
0			
GROUND FLOOR	· · · · · ·		
SECOND FLOOR 4000			
SECOND FLOOR			
7200			
THIRD FLOOR			
FOURTH FLOOR 10400			
FOURTH FLOOR			
13600			
FIFTH FLOOR	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
16800			
SIXTH FLOOR			
20000			
ROOF			


1:250

	e for a free second	
	•	
· · .	· · · ·	
	4	
	· · ·	
	e a construction de la construction	
•	· · · · · · · · · · · ·	
•		
· · ·		

and the second second	
and the second second second	
· · · · · · · · · · · · · · · · · · ·	
`	
· · · ·	
and the second	
· · · · ·	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
and the second	
· · · · · · · · · · · · · · · · · · ·	
•	
1966 - Constantina - Const	

PROJECT NO.
22005
PROJECT NAME
410 SUNSET DR MULTI-RES
410 SUNSET DR ST. THOMAS, ON
DRAWING TITLE
ELEVATIONS (PHASE 2)

SCALE	1:250
ISSUED FOR	
SCHEMA ⁻ DESIGN	ΠĊ
DATE	2022.06.30
3.4	

22005

PROJECT NAME

410 SUNSET DR MULTI-RES

410 SUNSET DR ST. THOMAS, ON

DRAWING TITLE

MASSING/ PERSPECTIVE VIEWS

SCALE

N.T.S.

2022.06.30

SCHEMATIC DESIGN

DATE

5.1

22005

PROJECT NAME

410 SUNSET DR MULTI-RES

410 sunset dr st. thomas, on

DRAWING TITLE

MASSING/ PERSPECTIVE VIEWS

SCALE

N.T.S.

SCHEMATIC DESIGN

DATE

2022.06.30

5.2

SWM, Sanitary and Water Supply Calculations

SWM Calculations

DATE: JOB N0.:	July 11, 2022 MTE-51252-100
Client:	Quincy Developments
Project:	410 Sunset Drive SPA
Location:	410 Sunset Drive, Saint Thomas

ALLOWABLE FLOWS

EXISTING CATCHMENT A1 TO EXISTING MUNICIPAL 1050mm STM

31101		
Area (m²)	С	A*C
8052.00		
642.000	0.9	577.80
1922.000	0.9	1729.80
95.00	0.9	85.50
	0.25	1348.25
8052.00		3741.35
0.46		
Area (m ²)	С	A*C
10521.00		
0.000	0.9	0.00
831.000	0.9	747.90
0.00	0.7	0.00
9690.00	0.2	1938.00
10521.00		2685.90
0.26		
0.46		
15	min	
135.72	mm/hr	
141.16	I/s	
0.46		
15	min	
81.96	mm/hr	
	Area (m ⁴) 8052.00 642.000 1922.000 95.00 5393.00 8052.00 0.46 Area (m ⁴) 10521.00 0.000 831.000 0.000 9690.00 10521.00 0.26 0.46 15 135.72 141.16	Area (m ⁴) C 8052.00 0.9 642.000 0.9 1922.000 0.9 95.00 0.9 5393.00 0.25 8052.00 0.46 0.46 0.9 10521.00 0.9 0.000 0.9 831.000 0.9 0.000 0.9 0.000 0.9 0.000 0.9 0.26 0.2 0.46 15 0.46 1/s 135.72 mm/hr 141.16 I/s

SAINT THOMAS RAINFALL DISTRIBUTION PARAMETERS*

Daturn Daried (vears)	A,B,C Parameters		
Return Period (years)	A	В	
2	23.600	-0.699	
5	31.100	-0.699	
10	36.000	-0.699	
25	42.300	-0.699	
50	46.900	-0.699	
100	51.500	-0.699	

*Intensity i= at^b (mm/hr) * Refer to the City of St. Thomas Design & Requirments Manual

Existing Catchment (A2) 100-Year Flows

C =	0.26	
Time to concentration $t_c =$	15	min
Intensity, i (@ t _c) =	135.72	mm/hr
U3 Post Development Flow, Q _r = 2.78*C*i*A =	101.34	I/s
Existing Catchment (A2) 5-Year Flows C =	0.26	_

6 -	0.20	
Time to concentration t_c =	15	min
Intensity, i (@ t _c) =	81.96	mm/hr
U4 Post Development Flow, $Q_r = 2.78 \text{ *C*i*A} =$	61.20	I/s

POST-DEVELOPMENT CONDITIONS

POST-DEVELOPMENT CATCHMENT AREA A3 TO EXISTING 1050mm STM

	Area (m ²)	С	A*C
Total Area:	7972.00		
Building Area:	1150.000	0.9	1035.00
Concrete/Asphalt:	4182.000	0.9	3763.80
Gravel:	0.00	0.9	0.00
Landscaped/Open:	2640.00	0.25	660.00
Totals:	7972.00		5458.80
$C_{eq} = Sum(A*C)/Sum(A) =$	0.68		

POST-DEVELOPMENT CATCHMENT AREA A4 TO NORMAN SUBDIVISION DRAINS

	Area (m²)	С	A*C
Total Area:	10601.00		
Building Area:	2152.200	0.9	1936.98
Concrete/Asphalt:	4229.000	0.9	3806.10
Gravel:	0.00	0.9	0.00
Landscaped/Open:	4219.80	0.25	1054.95
Totals:	10601.00		6798.03
$C_{eq} = Sum(A*C)/Sum(A) =$	0.64		

RETURN PERIOD OF STORM	A3 AREA ALLOWABLE POST-	A4 AREA ALLOWABLE POST
	DEVELOPMENT FLOWS	DEVELOPMENT FLOWS
	(L/S)	(L/S)
100-YEAR	141.16	101.34
5-YEAR	85.25	61.20

RAINFALL DATA

STORAGE CALCULATIONS

Post development Area A3

ainfall Data - St. Thomas Rair	nfall Intensity Duration
5 Yr St	m Event
Duration	Intensity "i"
(min.)	(mm/hr)
5	176.65
10	108.81
15	81.96
30	50.49
60	31.10
120	19.16
180	14.43

A3 Inflow, Q _i	Volume In	Orifice Outflow,	Surfice Outflow,	Allowable Release	Volume Out	Difference/
2.78*C*i*A	Q _i *t*60/1000	Qo	Q _o	Qo	Q _o *t*60/1000	Storage
(I/s)	(m ³)	(I/s)	(I/s)	(I/s)	(m ³)	(m ³)
268.07	80.42	85.25	0.00	85.25	25.57	54.85
165.13	99.08	85.25	0.00	85.25	51.15	47.93
124.38	111.94	85.25	0.00	85.25	76.72	35.22
76.62	137.91	85.25	0.00	85.25	153.44	-15.53
47.20	169.90	85.25	0.00	85.25	306.89	-136.98
29.07	209.32	85.25	0.00	85.25	613.77	-404.45
21.90	236.49	85.25	0.00	85.25	920.66	-684.16
				Max.	Storage Volume (m ³) =	54.85

100 Yr Stm Event		
Duration	Intensity "i"	
(min.)	(mm/hr)	
5	292.52	
10	180.19	
15	135.72	
30	83.60	
60	51.50	
120	31.72	
180	23.89	

A3 Inflow, Q _i	Volume In	Orifice Outflow,	Surfice Outflow,	Allowable Release	Volume Out	Difference/
2.78*C*i*A	Q _i *t*60/1000	Q _o	Q _o	Q _o	Q _o *t*60/1000	Storage
(I/s)	(m ³)	(l/s)	(I/s)	(I/s)	(m ³)	(m ³)
443.91	133.17	85.25	55.92	141.16	42.35	90.82
273.45	164.07	85.25	55.92	141.16	84.70	79.37
205.96	185.37	85.25	55.92	141.16	127.05	58.32
126.87	228.37	85.25	55.92	141.16	254.09	-25.72
78.15	281.35	85.25	55.92	141.16	508.19	-226.83
48.14	346.63	85.25	55.92	141.16	1016.37	-669.75
36.26	391.62	85.25	55.92	141.16	1524.56	-1132.94
	•			Max. S	Storage Volume (m ³) =	90.82

Available Surface Storage

Location Parking Ponding		Area (m²)	Depth(m)	Volume (m ³)
5 5 5	V=AxD/3	3080.00	0.29	297.73
		Total Sur	face Storage Available (m³) =	297.73

RAINFALL DATA

V=AxD/3

3048.00

0.29

Total Surface Storage Available (m³) =

Allowable Release Volume Out Qo Qo*t*60/1000 (l/s) (m³) 61.20 18.36 61.20 36.72 61.20 55.08 61.20 110.16 61.20 220.31 61.20 440.62	Qo (I/s) 61.20 61.20 61.20 61.20 61.20	virifice Outflow, Surfice Outflow, Qo Qo (I/s) (I/s) 61.20 0.00 61.20 0.00	Volume In Q _i *t*60/1000 (m ³) 100.15	A3 Inflow, Q _i 2.78*C*i*A (I/s)		Intensity "i"	Duration
61.20 18.36 61.20 36.72 61.20 55.08 61.20 110.16 61.20 220.31 61.20 440.62	61.20 61.20 61.20 61.20 61.20	61.20 0.00 61.20 0.00		(1/c)			
61.20 18.36 61.20 36.72 61.20 55.08 61.20 110.16 61.20 220.31 61.20 440.62	61.20 61.20 61.20 61.20 61.20	61.20 0.00 61.20 0.00				(mm/hr)	(min.)
61.20 36.72 61.20 55.08 61.20 110.16 61.20 220.31 61.20 440.62	61.20 61.20 61.20	61.20 0.00		333.84	-	176.65	5
61.20 55.08 61.20 110.16 61.20 220.31 61.20 440.62	61.20 61.20		123.39	205.64	-	108.81	10
61.20 110.16 61.20 220.31 61.20 440.62	61.20	61.20 0.00	139.40	154.89		81.96	15
61.20 440.62	61 20	61.20 0.00	171.74	95.41	-	50.49	30
		61.20 0.00	211.59	58.77	-	31.10	60
4 4	61.20	61.20 0.00	260.68	36.20		19.16	120
61.20 660.93	61.20	61.20 0.00	294.51	27.27		14.43	180
Allowable Release Volume Out Q ₀ Q ₀ *t*60/1000					1	Intonsity "i"	Duration
	<u> </u>					5	
(I/s) (m ³)							(min.)
101.34 30.40					-		5
101.34 60.80					-		
101.34 91.21							
101.34 182.41					-		
101.34 364.82					-		
101.34 729.65	101.34	61.20 79.97	431.67 487.70	59.95 45.16	-	31.72	120
	101.34	61.20 79.97				23.89	180
	ow,	rifice Outflow, Surfice Out Qo Qo (l/s) (l/s) 61.20 79.97 61.20 79.97 61.20 79.97 61.20 79.97 61.20 79.97 61.20 79.97 61.20 79.97 61.20 79.97 61.20 79.97	Volume In Q ₁ *t*60/1000 (m ³) 165.85 204.32 230.84 284.40 350.38	A3 Inflow, Q _i 2.78*C*i*A (I/s) 552.82 340.54 256.49 158.00 97.33 50.05		Intensity "i" (mm/hr) 292.52 180.19 135.72 83.60 51.50	Duration (min.) 5 10 15 30 60

STORAGE CALCULATIONS
Post development Area A4

294.64

294.64

Sanitary Flow Calculations

DATE: JOB NO.:	July 11, 2022 MTE-51252-100
Client:	Quincy Developments
Project:	410 Sunset Drive
Location:	410 Sunset Drive, Saint Thomas

SANITARY FLOWS

Site Area:	18574	m ²			
Building	Units	Population	Harmon Peaking Factor	Infiltration (I/s)	Peak Flow (I/s)
4-storey Residential Building	105	315	4.07	0.19	3.89
6-storey Residential Building	72	216	4.14	0.19	2.77
Total	177	531	3.96	0.19	6.27

City of St. Thomas Guidelines: Population Density: Average Flow Rate: Infiltration Rate: Peaking factor: Harmon Formula

3 people/unit 250 l/capita/day 0.1 l/ha/s

0.002893519 l/cap/s

 $M = 1 + \frac{14}{(4 + P^{\frac{1}{2}})}$

where P is tributary population in thousands

Peak Domestic Sewage Flows:

Q(d) = PqM + IA

Water Supply Demand Calculations

DATE: JOB NO.:	July 11, 2022 MTE-51252-100				
Client:	Quincy Developments				
Project:	410 Sunset Drive				
Location:	410 Sunset Drive, Saint Thomas				

WATER SUPPLY DEMAND

Building	Units	Population	Average Day Demand (I/s)	Max Day Demand (I/s)	Peak Hour Demand (I/s)
4-storey Residential	105	315	1.64	5.74	12.80
6-storey Residential	72	216	1.13	3.94	8.78
Total	177	531	2.77	9.68	21.57

City of St. Thomas Guidelines: Population Density: Average Flow Rate: Peaking factors:

3 people/unit 450 l/capita/day 3.5 Maximum Day Demand 7.8 Peak Hour Demand

Stormceptor Sizing Reports

arest Rainfall Station: LONDON CS mate Station Id: 6144478 ars of Rainfall Data: 20 e Name: 410 Sunset Dr A3 ainage Area (ha): 0.80 mperviousness: 66.88 Runoff Coefficient 'c': 0.70 ticle Size Distribution: Fine get TSS Removal (%): 70.0 quired Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Flow Rate (L/s): 20.48 / Fuel Spill Risk Site? Yes	Province:	Ontario	Proje	ct Name:	410 Sunset Dr	
arest Rainfall Station: LONDON CS mate Station Id: 6144478 mate Station Id: 6144478 ars of Rainfall Data: 20 e Name: 410 Sunset Dr A3 ainage Area (ha): 0.80 mperviousness: 66.88 Runoff Coefficient 'c': 0.70 ticle Size Distribution: Fine guired Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): 85.25	City:	St. Thomas	Proje	ct Number:	51252	
Indee Station I.I. Designer Email: bpavlovic@mte85.com ars of Rainfall Data: 20 e Name: 410 Sunset Dr A3 ainage Area (ha): 0.80 mperviousness: 66.88 Runoff Coefficient 'c': 0.70 tticle Size Distribution: Fine get TSS Removal (%): 70.0 mated Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Flow Rate (L/s): 20.48 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): 85.25	Nearest Rainfall Station:	LONDON CS	Desig	ner Name:	Bogdan Pavlovic	
ars of Rainfall Data: 20 be signer Email: be signer Phone: 519-701-2693 EOR Name: EOR Name: EOR Company: EOR Company: EOR Email: EOR Company: EOR Famil: EOR Phone: Stormary stream Flow Control? stream Flow Control? No Stormary Rate (kg/ha/yr): Storward (kg/ha/yr): Stormary Rate (kg/ha/yr): St	Climate Station Id:	6144478	Desig	ner Company:	MTE Consultants	
e Name: 410 Sunset Dr A3 ainage Area (ha): 0.80 mperviousness: 66.88 Runoff Coefficient 'c': 0.70 ticle Size Distribution: Fine get TSS Removal (%): 70.0 quired Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Flow Rate (L/s): 20.48 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): 85.25		20	Desig	ner Email:	bpavlovic@mte85.	com
ainage Area (ha): 0.80 mperviousness: 66.88 Runoff Coefficient 'c': 0.70 ticle Size Distribution: Fine get TSS Removal (%): 70.0 quired Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Flow Rate (L/s): 20.48 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): 85.25			Desig	ner Phone:	519-701-2693	
ainage Area (ha): 0.80 mperviousness: 66.88 Runoff Coefficient 'c': 0.70 ticle Size Distribution: Fine rget TSS Removal (%): 70.0 quired Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Flow Rate (L/s): 20.48 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): 85.25	Site Name:	410 Sunset Dr A3	EOR	lame:		
Imperviousness: 66.88 Runoff Coefficient 'c': 0.70 tticle Size Distribution: Fine get TSS Removal (%): 70.0 quired Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Flow Rate (L/s): 20.48 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): 85.25	Drainage Area (ha):	0.80				
Runoff Coefficient 'c': 0.70 ticle Size Distribution: Fine rget TSS Removal (%): 70.0 quired Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Flow Rate (L/s): 20.48 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): 85.25		66.88		-		
ticle Size Distribution: Fine get TSS Removal (%): 70.0 quired Water Quality Runoff Volume Capture (%): 90.00 imated Water Quality Flow Rate (L/s): 20.48 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): 52.25 EFO10 97 EFO12 98	-	efficient 'c': 0.70	EOR F	hone:		
Annaced Water Quality Flow Rate (L/s). 120.463 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): EFO10 EFO12 98	Required Water Quality Runo	ff Volume Capture (%):	90.00			-
Annaced Water Quality Flow Rate (L/s). 120.463 / Fuel Spill Risk Site? Yes stream Flow Control? No ak Conveyance (maximum) Flow Rate (L/s): 85.25 e Sediment Transport Rate (kg/ha/yr): EFO10 EFO12 98						TSS Removal
stream Flow Control? No EFO4 80 ak Conveyance (maximum) Flow Rate (L/s): 85.25 EFO8 94 e Sediment Transport Rate (kg/ha/yr): EFO10 97 EFO12 98					Model	Provided (%)
ak Conveyance (maximum) Flow Rate (L/s): 85.25 EFO8 94 e Sediment Transport Rate (kg/ha/yr): EFO10 97 EFO12 98	Oil / Fuel Spill Risk Site?		Yes		EFO4	80
EFO10 97 EFO12 98	Upstream Flow Control?		No		EFO6	90
EFO12 98	Peak Conveyance (maximum)	Flow Rate (L/s):	85.25		EFO8	94
EF012 98	Site Sediment Transport Rate	(kg/ha/yr):			EFO10	97
		(EFO12	98
Estimated Net Annual Sediment (TSS) Load Reduction (%):	Estimated Water Quality Flow Oil / Fuel Spill Risk Site? Upstream Flow Control? Peak Conveyance (maximum)	r Rate (L/s): Flow Rate (L/s): (kg/ha/yr):	20.48 Yes No 85.25 Rec		Model EFO4 EFO6 EFO8 EFO10 EFO12 tormceptor EFO	Provideo 80 90 94 97 97 98 Model:
			Water	Quality Rund	off Volume Cant	ure (%)·
			Water	Quality Run		

Forterra

Stormceptor[®]EF Sizing Report

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

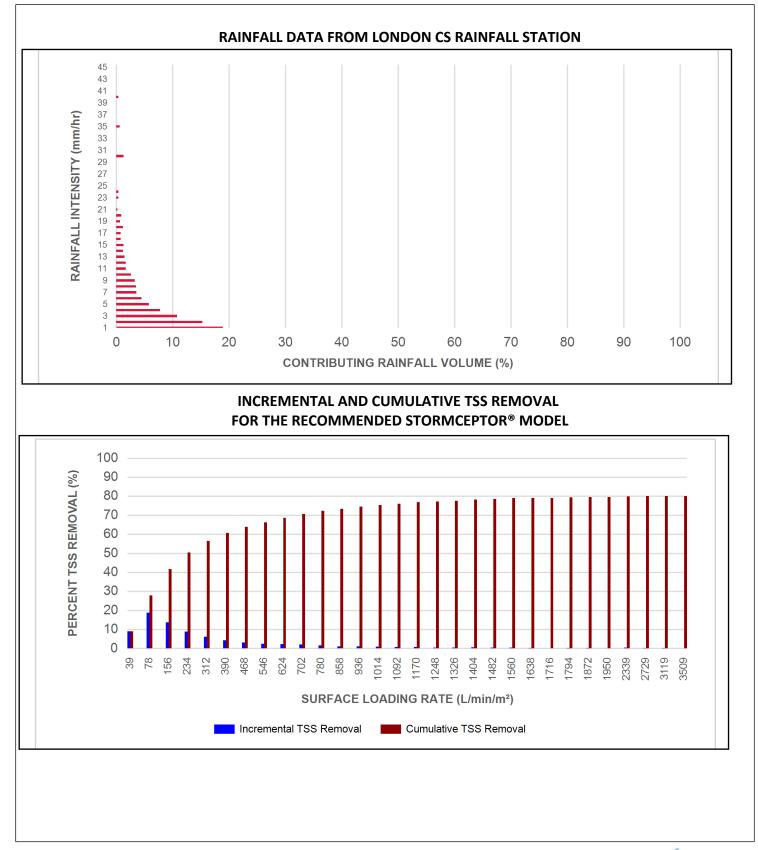
► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dorsont
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

Stormceptor[®]EF Sizing Report


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.5	9.0	9.0	0.78	47.0	39.0	100	9.0	9.0
1	18.9	27.8	1.56	94.0	78.0	100	18.9	27.8
2	15.3	43.2	3.12	187.0	156.0	89	13.7	41.6
3	10.8	53.9	4.68	281.0	234.0	82	8.8	50.4
4	7.8	61.7	6.24	374.0	312.0	78	6.1	56.4
5	5.8	67.5	7.80	468.0	390.0	74	4.3	60.7
6	4.5	72.0	9.36	561.0	468.0	71	3.2	63.9
7	3.6	75.6	10.92	655.0	546.0	67	2.4	66.3
8	3.5	79.1	12.48	749.0	624.0	64	2.3	68.6
9	3.3	82.4	14.04	842.0	702.0	64	2.1	70.7
10	2.6	85.0	15.60	936.0	780.0	63	1.7	72.3
11	1.7	86.7	17.16	1029.0	858.0	63	1.1	73.4
12	1.7	88.4	18.72	1123.0	936.0	62	1.0	74.5
13	1.5	89.8	20.28	1217.0	1014.0	61	0.9	75.4
14	1.2	91.0	21.84	1310.0	1092.0	59	0.7	76.0
15	1.3	92.3	23.39	1404.0	1170.0	58	0.7	76.8
16	0.8	93.0	24.95	1497.0	1248.0	56	0.4	77.2
17	0.8	93.8	26.51	1591.0	1326.0	54	0.4	77.6
18	1.2	95.0	28.07	1684.0	1404.0	52	0.6	78.2
19	0.7	95.7	29.63	1778.0	1482.0	49	0.4	78.6
20	0.9	96.6	31.19	1872.0	1560.0	47	0.4	79.0
21	0.2	96.8	32.75	1965.0	1638.0	45	0.1	79.1
22	0.0	96.8	34.31	2059.0	1716.0	43	0.0	79.1
23	0.4	97.2	35.87	2152.0	1794.0	41	0.2	79.3
24	0.4	97.7	37.43	2246.0	1872.0	39	0.2	79.5
25	0.0	97.7	38.99	2339.0	1950.0	38	0.0	79.5
30	1.3	99.0	46.79	2807.0	2339.0	31	0.4	79.9
35	0.6	99.6	54.59	3275.0	2729.0	27	0.2	80.0
40	0.4	100.0	62.39	3743.0	3119.0	24	0.1	80.1
45	0.0	100.0	70.18	4211.0	3509.0	21	0.0	80.1
	-		Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	80 %

Climate Station ID: 6144478 Years of Rainfall Data: 20

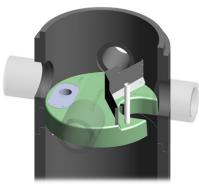
Stormceptor[®]

Stormceptor[®]EF Sizing Report

FORTERRA

Maximum Pipe Diameter / Peak Conveyance											
Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame		Max Out Diame	•		nveyance Rate		
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

45*-90* 0*-45* 0*-45* 45*-90*

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity												
Stormceptor EF / EFO	· Dine Invert to		RecommendedOil VolumeSedimentMaintenance Depth *		Maximum Sediment Volume * *		Maximum Sediment Mass **					
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:
6 ft (1829 mm) Diameter OGS Units:
8 ft (2438 mm) Diameter OGS Units:
10 ft (3048 mm) Diameter OGS Units:
12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

rovince:	Ontario		Project Name:	410 Sunset Dr	
City:	St. Thomas		Project Number:	51252	
	LONDON CS		Designer Name:	Bogdan Pavlovic	
Climate Station Id:	6144478		Designer Company:	MTE Consultants	
ears of Rainfall Data:	20		Designer Email:	bpavlovic@mte85.	.com
			Designer Phone:	519-701-2693	
ite Name:	410 Sunset Dr A4		EOR Name:		
Drainage Area (ha):	1.06		EOR Company:		
% Imperviousness:	60.20		EOR Email:		
-	Defficient 'c': 0.66		EOR Phone:		
Target TSS Removal (%): Required Water Quality Run	off Volume Capture (%):	90.00			ummary
Estimated Water Quality Flo		25.59		Stormceptor Model	TSS Removal Provided (%)
Oil / Fuel Spill Risk Site?		Yes		EFO4	76
Upstream Flow Control?		No		EFO6	87
Peak Conveyance (maximum) Flow Rate (L/s):	61.20		EFO8	93
Site Sediment Transport Rate	e (kg/ha/yr):			EFO10	96
I				EFO12	97
			Recommended S	tormceptor EFO	Model: EF
	Estima	ted Net An	nual Sediment (T	SS) Load Reduct	ion (%): 7

Forterra

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

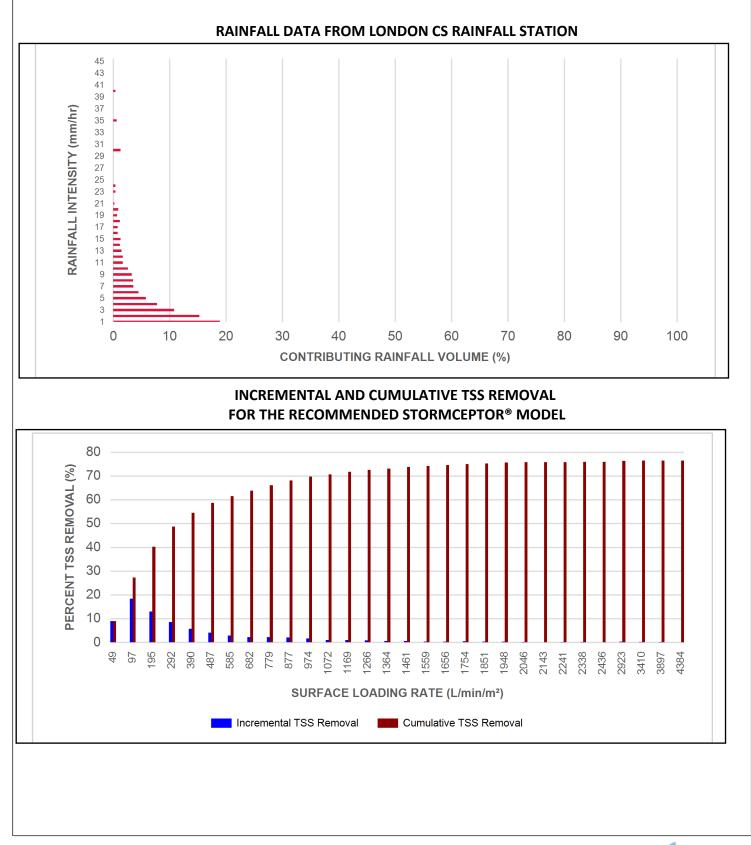
PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dorsont
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	nfall Rainfall Volume Flow Rate Loading Rate		Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)		
0.5	9.0	9.0	0.97	58.0	49.0	100	9.0	9.0
1	18.9	27.8	1.95	117.0	97.0	97	18.3	27.3
2	15.3	43.2	3.90	234.0	195.0	84	12.9	40.2
3	10.8	53.9	5.85	351.0	292.0	79	8.5	48.7
4	7.8	61.7	7.79	468.0	390.0	74	5.8	54.5
5	5.8	67.5	9.74	585.0	487.0	70	4.1	58.6
6	4.5	72.0	11.69	701.0	585.0	66	2.9	61.5
7	3.6	75.6	13.64	818.0	682.0	64	2.3	63.8
8	3.5	79.1	15.59	935.0	779.0	63	2.2	66.0
9	3.3	82.4	17.54	1052.0	877.0	63	2.0	68.1
10	2.6	85.0	19.48	1169.0	974.0	62	1.6	69.7
11	1.7	86.7	21.43	1286.0	1072.0	60	1.0	70.7
12	1.7	88.4	23.38	1403.0	1169.0	58	1.0	71.7
13	1.5	89.8	25.33	1520.0	1266.0	56	0.8	72.5
14	1.2	91.0	27.28	1637.0	1364.0	53	0.6	73.1
15	1.3	92.3	29.23	1754.0	1461.0	50	0.6	73.8
16	0.8	93.0	31.17	1870.0	1559.0	47	0.4	74.1
17	0.8	93.8	33.12	1987.0	1656.0	44	0.3	74.5
18	1.2	95.0	35.07	2104.0	1754.0	42	0.5	75.0
19	0.7	95.7	37.02	2221.0	1851.0	40	0.3	75.2
20	0.9	96.6	38.97	2338.0	1948.0	38	0.4	75.6
21	0.2	96.8	40.92	2455.0	2046.0	36	0.1	75.7
22	0.0	96.8	42.87	2572.0	2143.0	34	0.0	75.7
23	0.4	97.2	44.81	2689.0	2241.0	33	0.1	75.8
24	0.4	97.7	46.76	2806.0	2338.0	31	0.1	75.9
25	0.0	97.7	48.71	2923.0	2436.0	30	0.0	75.9
30	1.3	99.0	58.45	3507.0	2923.0	25	0.3	76.3
35	0.6	99.6	68.19	4092.0	3410.0	22	0.1	76.4
40	0.4	100.0	77.94	4676.0	3897.0	19	0.1	76.5
45	0.0	100.0	87.68	5261.0	4384.0	17	0.0	76.5
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	76 %

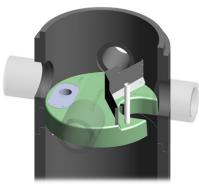
Climate Station ID: 6144478 Years of Rainfall Data: 20

Stormceptor[®]

FORTERRA

Maximum Pipe Diameter / Peak Conveyance											
Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame		Max Out Diame	•		nveyance Rate		
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

45*-90* 0*-45* 0*-45* 45*-90*

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity												
Stormceptor EF / EFO	· Dine Invert to		RecommendedOil VolumeSedimentMaintenance Depth *		Maximum Sediment Volume * *		Maximum Sediment Mass **					
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:
6 ft (1829 mm) Diameter OGS Units:
8 ft (2438 mm) Diameter OGS Units:
10 ft (3048 mm) Diameter OGS Units:
12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

