

ARVA LOCATION CIVIL / STRUCTURAL DIVISION 14361 Medway Rd., P.O. Box 29

NORTH LONDON LOCATION

KITCHENER LOCATION

1415 Huron Rd., Unit 225 Kitchener, Ont, N2R 0L3 P: 519.725.8093

www.sbmltd.ca

sbm@sbmltd.ca

March 8, 2019 SBM-17-2126

Corporation of the Municipality of Central Elgin 450 Sunset Drive St. Thomas, ON N5R 5V1

Attention: Mr. Lloyd Perrin, Director of Physical Services

Re: Servicing and Stormwater Management Feasibility Study
Proposed Subdivision Development – Craigholme Phase 6

1. INTRODUCTION

This Servicing and Preliminary Stormwater Management (SWM) Feasibility Study (Study) has been prepared by Strik Baldinelli Moniz Ltd (SBM) to provide preliminary servicing and stormwater management design flows and storage requirements for the Craigholme subdivision, Phase 6 in Belmont, Ontario.

The site is bordered by the Seventh Ave Right-of-way (R.O.W.) to the north, existing single-family residential lands to the east and agricultural/open space to the south and west. It is our understanding that the proposed development is to include 236 single family residential units and 48 semi-detached units and a block for stormwater management.

2. SANITARY SERVICING

As per the Craigholme Subdivision Phase 5 Drawings by Parsons provided in Appendix A, there is a 250 mm diameter sanitary service stub, capped at the southeast of the development limit within a servicing easement. The existing stub capped at property line has been designed for a population of 800 people with a total area of 16.456 ha. The design sheet provided in Appendix A, for the Phase 5 lands has a peak flow for the Phase 6 lands of 17.59 L/s. The Phase 6 residential subdivision sanitary sewers are to be connected to the existing sanitary manhole SA-2 within the Kettle Creek Drive Right-of-Way via the existing plug.

This proposed development is to include 236 single family units and 48 semi-detached units. The population for the entire development was calculated using the population density of 3.5 people per unit, as per the Municipality of Central Elgin Design Guidelines and Construction Standards (DG&CS). The sanitary peak flow was calculated by multiplying population for the entire site by the average usage of 400 litres per day per capita, and the Harmon peaking factor "M". The sanitary design flow peak for the entire site area was calculated by adding residential and the infiltration allowance of 0.20 litres per second per hectare. These calculations are provided in the sanitary sewer design sheet provided in Appendix B by SBM. The sanitary sewer design sheet shows that the proposed 250 mm diameter sanitary sewers at the proposed slopes have sufficient capacity to convey the peak design flow of 20.76 L/s to existing sanitary manhole SA-2.

As per Parsons Sanitary Design Sheet for the Phase 5 lands provided in Appendix A, the existing sanitary stub capped at the property limit within the municipal easement was designed for a catchment area of 16.456 ha and a population of 800 people. As per Parsons design sheets the designed flow from the Phase 6 Lands is 17.59 L/s which is 3.17 L/s less than the calculated flows per SBM's design sheet in Appendix B. Design sheets provided by Parsons show that the minimum additional capacity downstream prior to the ultimate outlet is 11.76 L/s and therefore it is determined there is available capacity within

the downstream sanitary sewers for the increase in flows of 3.71 L/s. Municipality to review and advise if downstream sewers, lift station, treatment plant etc. have capacity for the slight increase in original design flows.

3. STORM WATER MANAGEMENT AND STORM SERVICING

2.1 Design Criteria

The following SWM management criteria were established for this site:

- Quantity Controls
 - The post-development flows generated from the site during the 2-year to 100-year design storms are to be attenuated to the pre-development levels.
- Grading and Drainage Controls
 - Grading will direct overland flows to the proposed on-site dry pond and released to the existing creek/wetland via outlets within the SWM Block matching pre-development levels or less for each storm event.
- Quality Controls
 - A normal level of stormwater quality control (70% total suspended solids [TSS] removal) is proposed on site and will be accomplished through a treatment train approach using soakaway pits, snouts in road catch basins and Oil/Grit Separator (OGS) units.

2.2 Hydrologic Model

Hydrologic modelling was performed using SWMM 5.1, a widely-accepted model for urban developments, to generate runoff hydrographs and route flows through the storage structures.

2.2.1 Rainfall Data

Based on Municipal requirements, St. Thomas intensity-duration-frequency (IDF) curves for the 2, 5, 10, 25, 50 and 100-year return periods are as follows:

Return	Parameters			Duration
Period (Years)	a	b	С	(Hours)
2	747.965	7.4671	0.80481	3
5	1007.053	7.382	0.80404	3
10	1181.284	7.382	0.80397	3
25	1373.601	7.1064	0.80091	3
50	1507.588	6.8754	0.79819	3
100	1660.599	6.8754	0.79783	3

Table 1: St. Thomas IDF Curves

A Chicago storm distribution with the IDF curves provided in Table 1 and the fraction r = 0.35 was used in the SWMM model.

2.2.2 Pre-Development Conditions

Under pre-development conditions, the site is an open field with a wetland feature at the south of the property. As per the topographic survey completed by MTE Consultants Inc., the entire site drains to the south west corner of the property. Refer to the provided figure attached for the pre-development catchment area.

SCS curve numbers of 86 and 80 were determined for the pervious areas (Pre and Post Development) and 98 for impervious areas, based on an assumed Hydrologic Soil Group D and 'good' contoured row crops for pre-development and 'good' pasture/range for post-development based on Ministry of Transportation (MTO) Design Chart 1.09.

The pre-development catchment parameters are as follows:

Catchment	Area	%	Overland Flow	Overland	SCS Curve
	(ha)	Impervious	Width (m)	Slope (%)	Number
A100	19.659	0	278	3	86

Table 2: Pre-Development Catchment Parameters

The pre-development catchment parameters provided in Table 2 were used in the SWMM 5.1 model and pre-development peak flow rates of 0.08 m³/s and 0.65 m³/s at OUT100 (inlet to proposed SWM dry pond for the post-development catchment area), were generated for the 2 and 100-year design storms.

2.2.3 Post-Development Conditions.

The post-development conditions and catchment areas are shown on the attached figure.

The post-development catchment parameters are as follows:

Catchment	Area	%	Width (m)	Overland	SCS Curve
	(ha)	Impervious		Slope (%)	Number
A200	19.659	37.39	278	3	80

Table 3: Post-Development Catchment Parameters

The post-development catchment parameters provided in Table 3 were used in the SWMM 5 model and post-development flow rates, flowing from ST200 (Dry Pond Facility) via the proposed 295 mm orifice (O200) and 3.5m by 0.3m weir (W200), were generated for the 2 to 100-year design storms and can be seen in Table 4. Table 4 shows no flows through the weir during any of the design storms due to maximizing the dry pond for the available space within the SWM block. This will be further refined in detailed design, but post-development flows will remain equal to or less than pre-development flows. The 2 and 100-year post-development output files are attached.

	SWMM5 Model Result Summary												
Design Storm Event	Existing Conditions Peak Runoff (m³/s)	Proposed Conditions Peak Discharge - Orifice (m³/s)	Proposed Conditions Peak Discharge - Weir (m³/s)	Proposed Conditions Total Peak Discharge (m³/s)	Dry-Basin Peak Attenuation (m³)	Dry-Basin Peak Ponding Elev. (m)	Dry- Basin Peak Ponding Depth. (m)						
2-Year	0.08	0.079	0.000	0.079	1,880	257.43	0.58						
5-Year	0.18	0.112	0.000	0.112	2,942	257.71	0.86						
10-Year	0.27	0.134	0.000	0.134	3,773	257.92	1.07						
25-Year	0.41	0.159	0.000	0.159	4,913	258.18	1.33						
50-Year	0.52	0.176	0.000	0.176	5,822	258.38	1.53						
100-Year	0.65	0.191	0.000	0.191	6,787	258.57	1.72						

Table 4: Model Result Summary

The post-development flows generated from the site during the 2-year design storm are to be attenuated to the 2-year predevelopment levels via a 295mm orifice. Larger storms up to the 100-year design storm are to be released at a maximum of $0.65 \, \text{m}^3$ /s through the proposed orifice and weir matching pre-development conditions of the site. The outlet pipe will be directed to a spreader swale to distribute the flows to the wetland as sheet flow rather than a concentrated flow.

Through completion of a water balance for the wetland feature, the quantity of additional flows to the upstream portion of the wetland will be accommodated through rear yard drainage, if necessary, a second pipe system conveying clean roof/rear yard water to the feature.

The preliminary SWM Block, based on a constant top of pond elevation of 259.85, internal side slopes of 4:1 and external side slopes of 3:1 with a max depth of 3.00m (top of pond = 259.85 m.a.s.l minus outlet invert of 256.85 m.a.s.l), yields a total storage volume of approximately 14,323 m³. This calculated preliminary storage volume, based on the revised draft plan would be sufficient to attenuate the 2 to 100-year design storms to pre-development levels as shown above but would further be refined within detailed design.

2.3 Quality Controls

To achieve quality control for the proposed development, we are proposing a treatment train approach. We will be implementing side and rear yard grassed swales and low-slope grading (where feasible) to promote pre-treatment and polishing, increase flow length/time of concentration and promote evapotranspiration. It is proposed to implement soakaway pits on each lot to infiltrate 20mm off of the rooftops where grading and groundwater levels allow and snouts within the on street catch basins. Prior to discharging to the existing creek/wetland, an OGS unit will be incorporated downstream of the pond outlet to provide a normal level of treatment (70% T.S.S removal).

4. WATER SERVICING

As per the Craigholme Subdivision Phase 4 & 5 Drawings by Parsons., there are 200 mm diameter water services stubbed at the R.O.W. limits of Snyders Avenue adjacent to Landon Lane and Anita Court. There is also a 200mm diameter watermain stubbed at property line within the municipal easement off of Kettle Creek Drive. Through the construction of the Phase 3 development, a 300 mm watermain was extended from Kettle Creek Drive to Snyders Avenue within the Seventh Ave R.O.W. Through detailed design, the proposed development of the Phase 6 lands, will connect into existing water services through the extension of Landon Lane and the water service within the municipal easement. If required, the 300mm diameter watermain along Seventh Ave will be extended to the development's entrance for a third water connection to provide a sufficient looped system.

It is our understanding that watermain modelling of the water distribution system was not completed for the previous phases to confirm capacity for the proposed development, however, this will be completed during the detailed design phase for Phase 6 to confirm required watermain sizing to provide for the domestic and fire demands.

5. SUMMARY

Based on the above, the proposed stormwater quantity controls will restrict flows to pre-development levels or less and quality controls utilizing a "treatment train" approach will provide the required normal level of treatment (70% TSS removal) or greater.

6. LIMITATIONS

This Brief was prepared by Strik, Baldinelli, Moniz Ltd. for Craigholme Estates Ltd., the Municipality of Central Elgin, and Kettle Creek Conservation Authority. Use of this Brief by any third party, or any reliance upon its findings, is solely the responsibility of that party. Strik, Baldinelli, Moniz Ltd. accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions undertaken as a result of this report. Third party use of this report, without the express written consent of the Consultant, denies any claims, whether in contract, tort, and/or any other cause of action in law, against the Consultant

All findings and conclusions presented in this Brief are based on the conditions as they appeared during the period of the review. This Brief is not intended to be exhaustive in scope or to imply a risk-free property. It should be recognised that the passage of time may alter the opinions, conclusions, and recommendations provided herein.

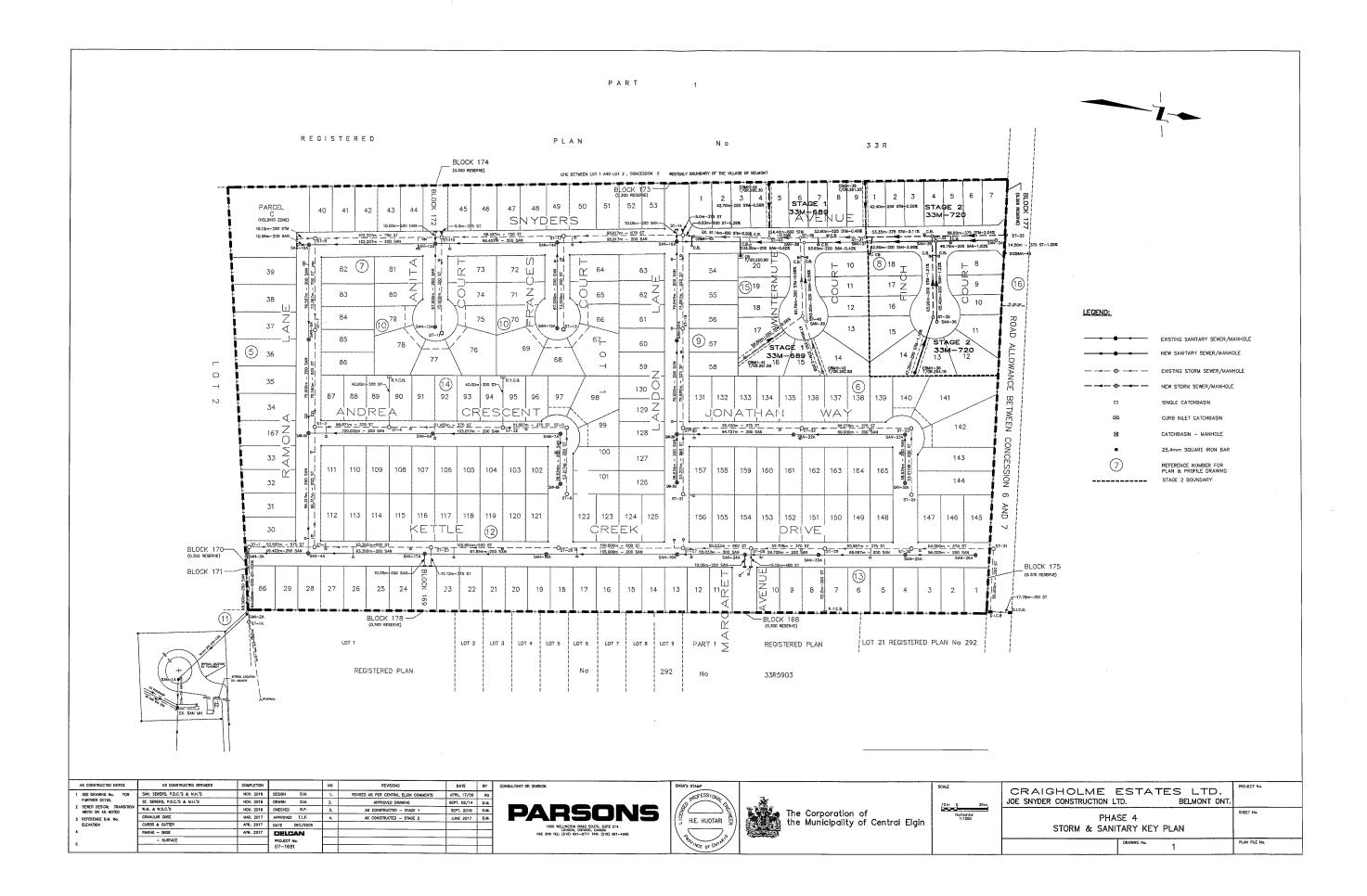
SBM's review was limited to the documents referenced above and/or on the SBM drawings provided separately. SBM Ltd. accepts no responsibility for the accuracy of the information provided by others. All designs and recommendations presented in this brief are based on the information available at the time of the review. If you have any questions or require additional information, please do not hesitate to contact the undersigned.

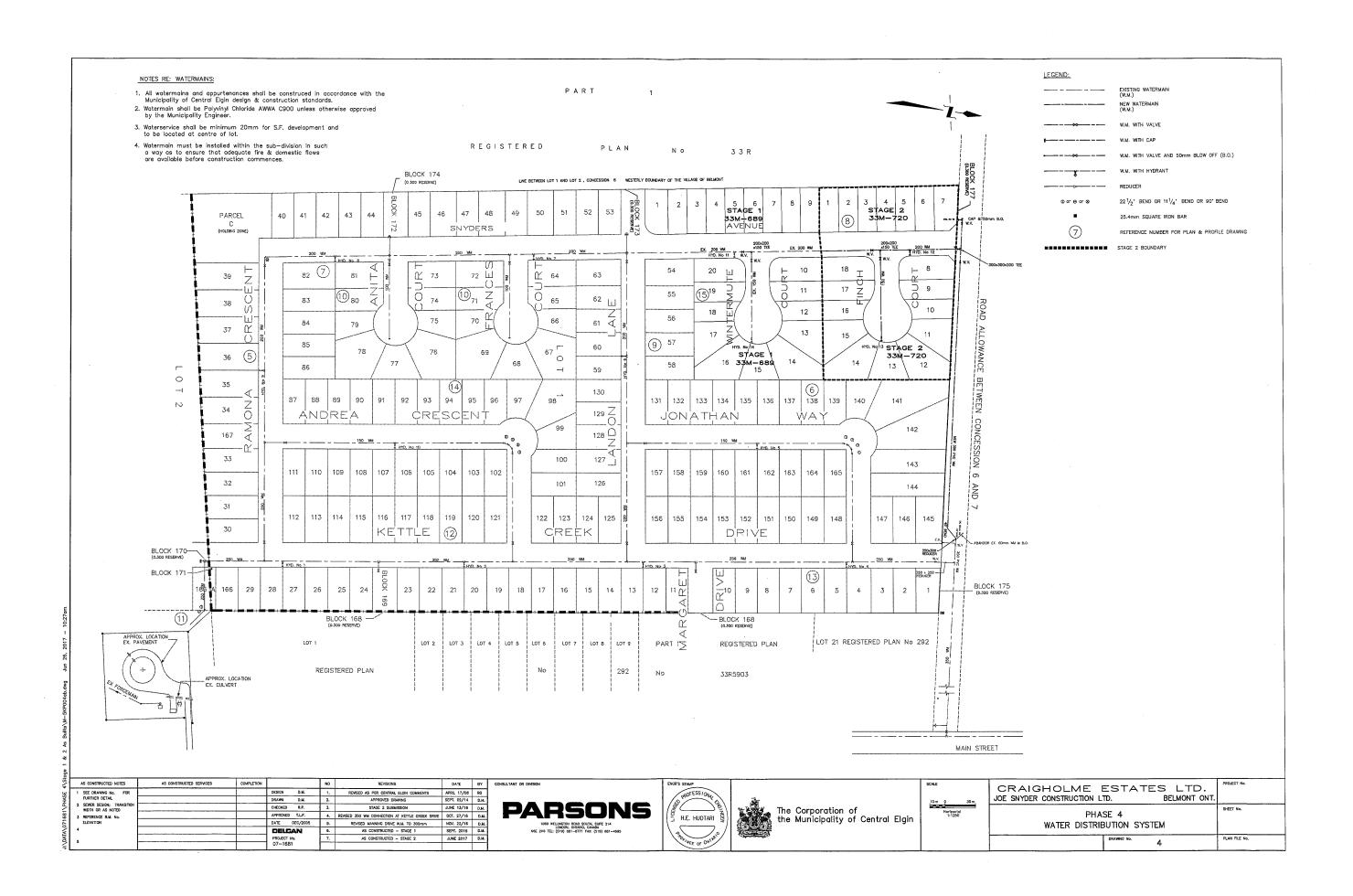
This document is deemed to be the intellectual property of Strik, Baldinelli, Moniz Ltd. in accordance with Canadian copyright law.

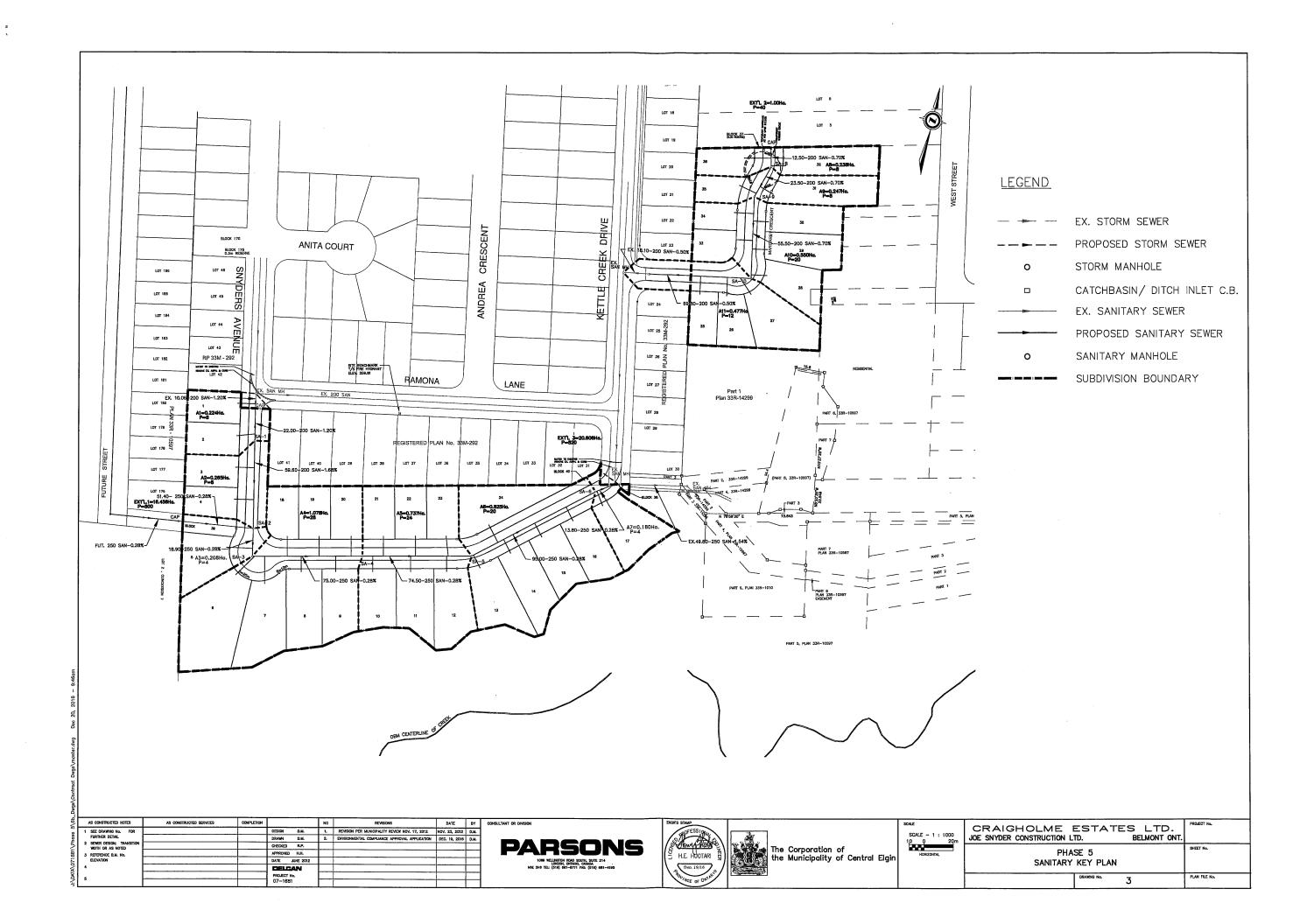
Respectfully submitted,

Strik, Baldinelli, Moniz Ltd.

Civil • Structural • Mechanical • Electrical


Kevin Moniz, P.Eng. Principal, Civil Engineering K. A. MONIZ 100124664 WAR.8/19


Ryan Maguire, E.I.T. Engineer In Training


pyon Magnic

APPENDIX A

Parsons's Phase 4 Storm and Sanitary Key Plan
Parson's Phase 4 Water Distribution System
Parsons's Phase 5 Sanitary Drainage Key Plan
Parsons's Phase 5 Sanitary Design Sheet
Parsons's Phase 5 Watermain Key Plan
Parson's Phase 5 Kettle Creek & Sanitary Easement Plan and Profile Drawings

BELMONT ONTARIO ENTER FREQUENCY YEAR: PROJECT: CRAIGHOLME ESTATES-PHASE 5 LOND O.K.

2,000 O.K.

1.000 1000.000

JOB NO: EM1681 DATE: 19-Dec-16

CITY: BELMONT

2.000 YEAR CURVE

STORM SEWER DESIGN SHEET

	LOCAT	TION						ACCUMULA	ATED STORM	WATER ELO	WS	A							SEWE	R DESIGN					PRO	OFILE
AREA NO.	STREET		TO	INCR. AREA (ha)	ACCUM. AREA (ha)	С	INCR. AxC	TOT. SECT.	TOT. SWR	TOTAL AxCx2.78	TIME OF SECT. (min)	ACCUM. TIME (min)	INTENSITY	PEAK FLOWS	PIPE DIA. (mm)	SLOPE %	n	CAPACITY (Vs)	VELOCITY (m/s)	LENGTH (m)	TIME (min)	LOSSES (m)	DROP IN NODE (m)	FALL IN SEWER (m)	INVERT ELEV. U/S	INVERT ELEV. D/S
A1	KETTLE CREEK DRIVE	ST-1	ST-2	0.594	0.594	0.35	0.208	0.208	0.208	0.578	20.00	20.00	53.1	30.671	300	0.50	0.013	68.4	1.0	78.80	1.36	0.000	0.000	0.394	257.000	256.606
A2	KETTLE CREEK DRIVE	ST-2	ST-3	0.520	1,114	0.35	0.182	0.182	0.390	1.084	1.36	21.36	50.8	55,081	300	0.50	0.013	68,378	0.967	75,00	1.29	0.100	0.000	0.375	256,506	256,131
A3	KETTLE CREEK DRIVE	ST-3	ST-4	0.460	1.574	0.35	0.161	0.161	0.551	1.532	1.29	20.00	53.1	81.274	375	0.50	0,013	123.977	1.123	76.70	1.14	0,000	0.075	0.384	256.056	255.673
A4	KETTLE CREEK DRIVE	ST-4	ST-5	0.327	1.901	0.35	0.114	0.114	0.665	1.850	1.14	20.00	53.1	98,159	375.	0.50	0.013	123.977	1.123	53.80	0.80	0.060	0.000	0.269	255.613	255,344
A5	KETTLE CREEK DRIVE	ST-5	EX.ST-2	0.176	2.077	0.35	0.062	0.062	0.727	2.021	0.80	20.00	53.1	107.246	375	0.50	0.013	123.977	1.123	50.00	0.74	0.030	0.000	0.250	255.314	255.064
EXT'L.				1,000	1.000	0.35	0,350	0.350	0.350	0.973	1.29	22.65	48.9	47.564												
A6	MARGARET CRESCENT	CAP	ST-6	0.128	1.128	0.35	0.045	0.045	0.395	1.098	0.00	22.65	48.9	53.653	300	0.50	0.013	68.378	0.967	11.50	0.20	0.000	0.150	0.058	258.965	258.908
A7	MARGARET CRESCENT	ST-6	ST-7	0.128	1.256	0.35	0.045	0.045	0.440	1.222		20.00	53.1	64.854	300	0.50	0.013	68.378	0.967	23.50	0.40	0.030	0.000	0.118	258.878	258.760
A8	MARGARET CRESCENT	ST-7	ST-8	0.291	1,547	0.35	0.102	0.102	0.541	1.505	0.20	22.85	48.6	73.160	375	0.50	0.013	123.977	1.123	53.20	0.79	0.000	0.075	0.266	258.685	258.419
A8	MARGARET CRESCENT	ST-8	EX.ST-26	0.240	1.787	0.35	0.084	0.084	0.625	1.739	0.40	20.40	52.4	91.060	375	0.50	0.013	123.977	1.123	89.30	1.33	0.100	0.000	0.447	258.319	257.873
EX.EXT'L.	KETTLE CREEK DRIVE	EX.ST-26	EX.ST-25	8.370	10.157	0.35	2.930	2.930	2.930	8.144	1.09	24.54	46.4	377.602	600	0.60	0.013	475.612	1.682	102.85	1.02	0.025	0.000	0.617	258.482	257.823
EX.EXT'L.	KETTLE CREEK DRIVE	EX.ST-25	EX.ST-2	0.855	11.012	0.35	0.299	0.299	3.229	8.975	1.02	25.56	45.1	405.116	600	2.75	0.013	1018.2	3.6	93,36	0.43	0.000	0.000	2.567	257.822	255.254
EX.EXT'L.	RAMONA LANE	EX.ST-3	EX.ST-2	0.621	19.160	0.35	0.217	6.706	6.706	18.643	29.05	29.05	55.3	1030.940	825	0.45	0.013	962,921	1.801	96.32	0.89	0.093	0.000	0.433	255.413	254.980
EX.EXT'L	EASEMENT	EX.ST-2	EX.ST-1	0.330	32.579	0.35	0.116	0.116	10,777	29,960	0.89	29.94	40.7	1218,193	975	0.40	0,013	1417.369	1.898	52.68	0.46	0.225	0,000	0.211	254,755	254.544
EX.EXT'L.	EASEMENT	EX.ST-1	EX.ST-1A	0.000	32.579	0.35	0.000	0.000	10.777	29.960	0.46	30.40	40.3	1205.931	975	0.40	0.013	1417,369	1.898	60.00	0.53	0.075	0.000	0.240	254.469	254,229
EX.EXT'L.	EASEMENT	EX.ST-1A	OUTFALL	0.000	32.579	0.35	0.000	0.000	10.777	29.960	0.53	30.93	39.8	1192,337	975	0.40	0.013	1417,369	1.898	62.00	0.54	0.036	0.000	0.248	254.193	253.945

Project: Craigholme Subdivision, Phase 5 Job Number: EM-1681 Date: 07-Apr-16 File: J:\DATA\071681\Phase 5\6a-Docs

Infiltration Factor (I/s/ha): 0.2 Under Development Factor: 1 Litres/Person/Day: 400

SANITARY DESIGN SHEET

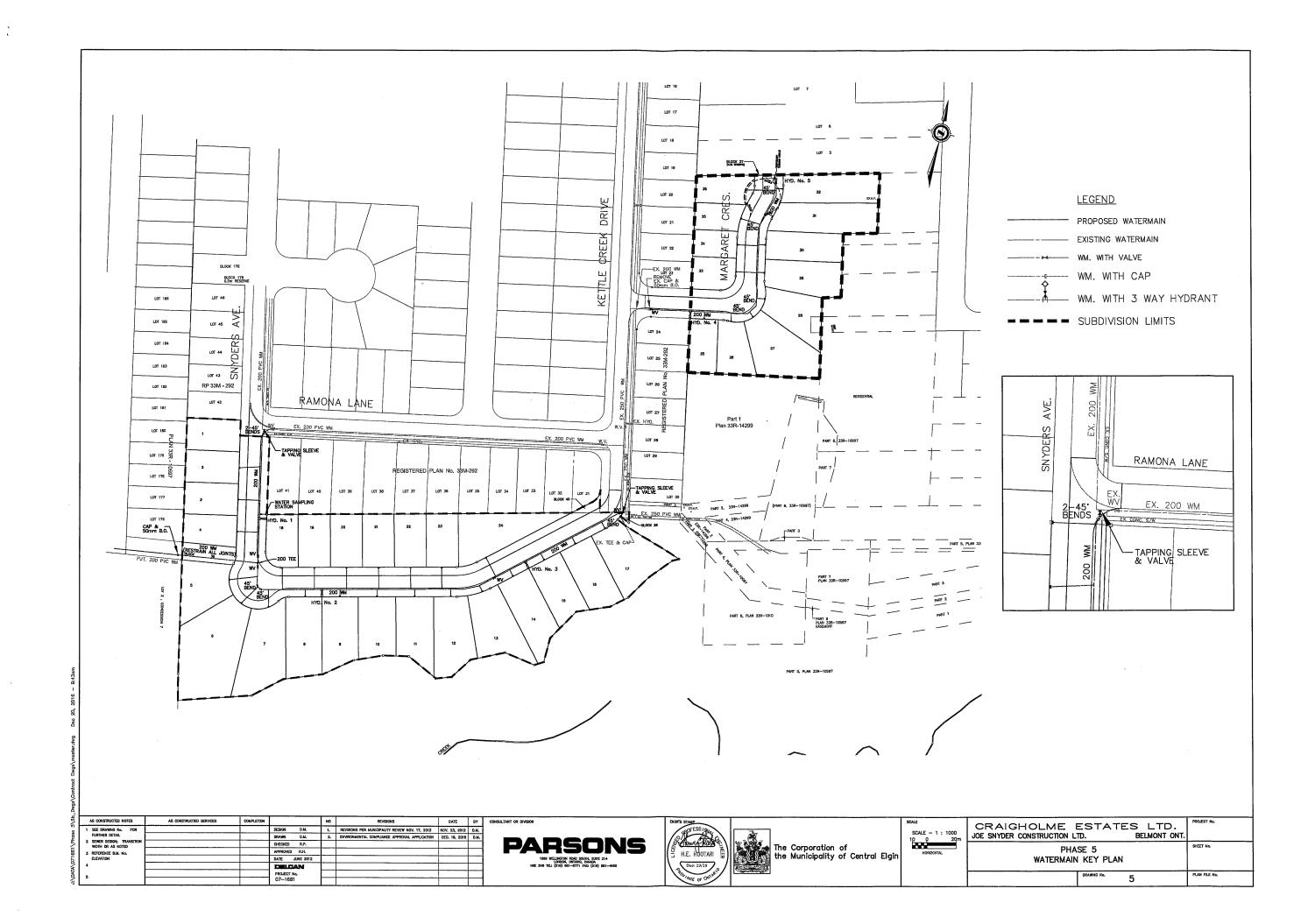
	LOCATION					RESIDENTIA	L		COMM	ERCIAL	POPU	LATION	INDU:	STRIAL	1	DESIG	N FLOW		l	-		PIPE	DATA				PROFILE	
AREA NO.	STREET	MANI	HOLES	AREA	ACCUM. AREA	POP. PER Ha	NO. LOTS	POP. PER LOT	AREA	POP. PER Ha	INCRES. POP.	ACCUM. POP.	AREA	LITRES/ Ha/DAY	PEAKING FACTOR	POP. FLOW	Peak Infiltration Flow	PEAK FLOW	DIA.	SLOPE	n	VEL.	CAPACITY	LENGTH	DROP IN	FALL IN SEWER	UPSTREAM INVERT	DOWNSTREAM INVERT
		FROM	ТО	(ha)	+				(ha)				(ha)	(l/ha/day)	(Harmon)	(Vs)	(Vs)	(Vs)	(mm)	(%)		(m/s)	(l/s)	(m)	(m)	(m)	(m)	(m)
A-1	KETTLE CREEK DRIVE	SAN-1	EX SAN MH	0.224	0.224		2	4			8	8			4.42	0.16	0.04	0.21	200	1.20	0.013	1.14	35.93	22.00	0.030	0.264	256.065	255.801
A-2	KETTLE CREEK DRIVE	SAN-1	SAN-2	0.265	0.265		2	4			8	8			4.42	0,16	0.05	0.22	200	1.68	0.013	1.35	42.51	59.60	0.455	1.001	256.000	254.999
EXT'L. 1			CAP	16.456	16.456		200	4			800	800			3.86	14.30	3.29	17.59	250	0.28	0.013	0,64	31.47					
	EASEMENT	CAP	SAN-2	0.000	16.456		0	4			0	800			3.86	14.30	3.29	17.59	250	0.28	0.013	0.64	31.47	51.40	0.455	0.144	255.097	254.953
A-3	KETTLE CREEK DRIVE	SAN-2	SAN-3	0.208	16.929		1	4			4	812			3.86	14.50	3.39	17,88	250	0.28	0.013	0.64	31.47	18.90	0.100	0.053	254.853	254.800
A-4	KETTLE CREEK DRIVE	SAN-3	SAN-4	1.078	18.007		7	4		·	28	840			3.85	14.96	3.60	18.56	250	0.28	0.013	0.64	31.47	75.00	0.058	0.210	254.742	254.532
A-5	KETTLE CREEK DRIVE	SAN-4	SAN-5	0.737	18.744		6	4			24	864			3.84	15.36	3.75	19.11	250	0.28	0.013	0.64	31.47	74.50	0.030	0.209	254.502	254.294
A-6	KETTLE CREEK DRIVE	SAN-5	SAN-6	0.825	19.569		5	4			20	884			3.83	15.69	3.91	19.60	250	0.28	0.013	0.64	31.47	-95,00	0.030	0.266	254.264	253.998
A-7	KETTLE CREEK DRIVE	SAN-6	EX SAN MH	0.180	19.749		1	4			4	888			3.83	15.76	3.95	19.71	250	0.28	0.013	0.64	31.47	13.80	0.030	0.039	253.968	253.929
EXTL 2			CAP	1.000	1.000		10	4			40	40	-		4.33	0.80	0.20	1.00					 	+	-			
A-8	MARGARET CRESCENT	CAP	SAN-8	0.238	1.238		2	4			8	48			4.32	0.96	0.25	1.21	200	0.70	0.013	0.87	27.44	12.50	0.000	0.088	258.248	258.161
A-9	MARGARET CRESCENT	SAN-8	SAN-9	0.247	1.485		2	4		1	8	56			4.30	1.12	0.30	1.41	200	0.70	0.013	0.87	27.44	23.50	0.030	0.165	258.131	257.966
A-10	MARGARET CRESCENT	SAN-9	SAN-10	0.550	2.035		5	4			20	76			4.27	1.50	0.41	1.91	200	0.70	0.013	0.87	27.44	55.50	0.030	0.389	257.936	257.548
A-11	MARGARET CRESCENT	SAN-10	CAP	0.477	2.512		3	4			12	88			4.26	1.73	0.50	2.24	200	0.50	0.013	0.74	23.19	69.80	0.100	0.349	257.448	257.099
	MARGARET CRESCENT	CAP	EX. SAN MH	0.000	2.512		0	4			0	88			4.26	1.73	0.50	2.24	200	0.50	0.013	0.74	23.19	18.10	0.000	0.091	257.099	257.008
EXTL. 3	EX. KETTLE CREEK DRIVE	EX.SAN MH	EX.SAN MH	20.606	20.606		205	4			820	820			3.85	14.63	4.12	18.75	250	0.44	0.013	0.80	39.45	50.80	0.455	0.224	254.090	253.866
	EASEMENT	EX.SAN MH	EX.SAN MH	0.000	42.867		0	4			0	1796			3.62	30.11	8.57	38,69	250	1.54	0.013	1.50	73.80	49.80	0.098	0.767	253,831	253.064
						†				-		1					2.07	1 23.00		1,	3,310		1	13,50		1		

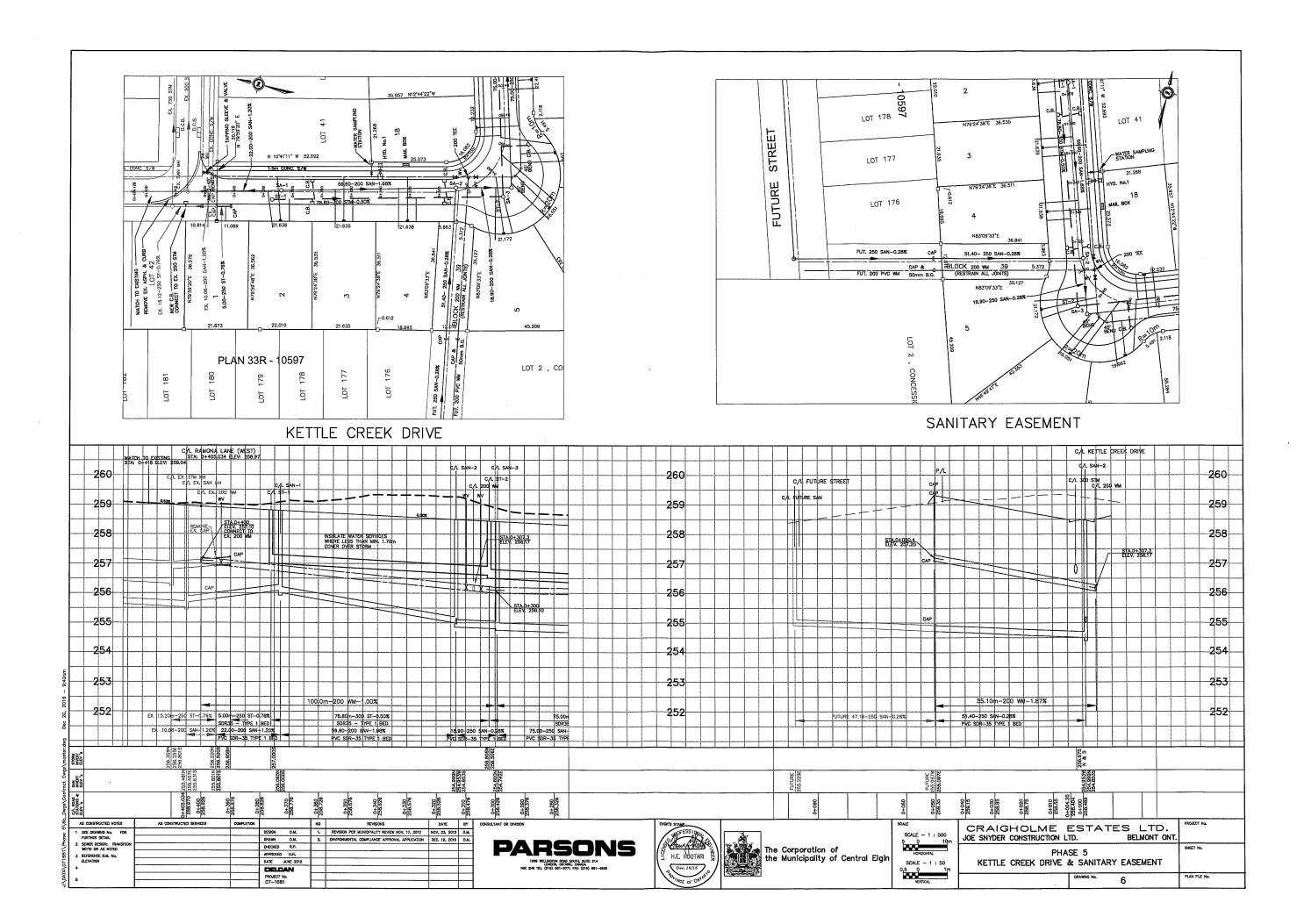
NO REVISIONS DATE BY CONSULTANT OR DIVISION

DESIGN D.M. 1. REVISION PER MAINICIPALITY REVIEW NOV. 17, 2012 NOV. 23, 2012 D.M.

DRAINN D.M. 2. DIVIRIONMENTAL COMPLIANCE APPROVAL APPLICATION DEC. 19, 2016 D.M.

CHECKED R.P. AS CONSTRUCTED NOTES 1 SEE DRAWING No. FOR FURTHER DETAIL 2 SEWER DESIGN; TRANSITION WIDTH OR AS NOTED 3 REFERENCE B.M. No. ELEVATION APPROVED H.H.


DATE JUNE 2012 PROJECT No. 07-1681


PARSONS 1099 WELLINGTON ROAD SOUTH, SUITE 214 LONDON, ONTARIO, CANADA NEE 2H6 TEL: (519) 681-8771 FAX: (519) 681-4995

CRAIGHOLME ESTATES LTD. JOE SNYDER CONSTRUCTION LTD. BELMONT ONT.	PROJECT No.
PHASE 5 STORM & SANITARY DESIGN SHEETS	SHEET No.
DRAWNG No. 4	PLAN FILE No.

Appendix B:

Sanitary Design Sheet for Phase 6 by SBM

ARVA LOCATION

NORTH LONDON LOCATION KITCHENER LOCATION

CIVIL / STRUCTURAL DIVISION
14361 Medway Rd., P.O. Box 29
Arva, Ont, NOM ICO
P: 519.471.6667

ACCORDANCE OF THE CONTROL DIVISION
1510 Woodcock \$1., Unit #7
London, Ont, N6H 551
P: 519.641.3040

1415 Huron Rd., Unit 225 Kitchener, Ont, N2R 0L3 P: 519.725.8093

Date: March 8, 2019 Job Number: SBM-17-2126

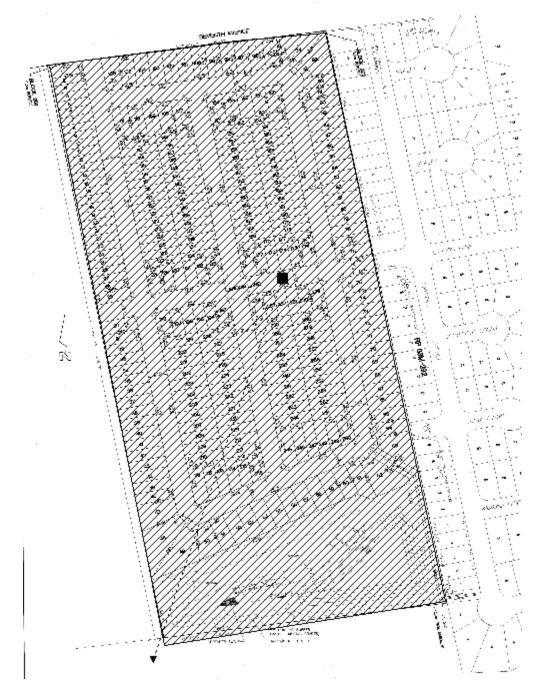
Client: Craigholme Estates Ltd. Project: Belmont Phase 6

Designed By: RM Reviewed By: KM Project File No.: SBM-17-2126

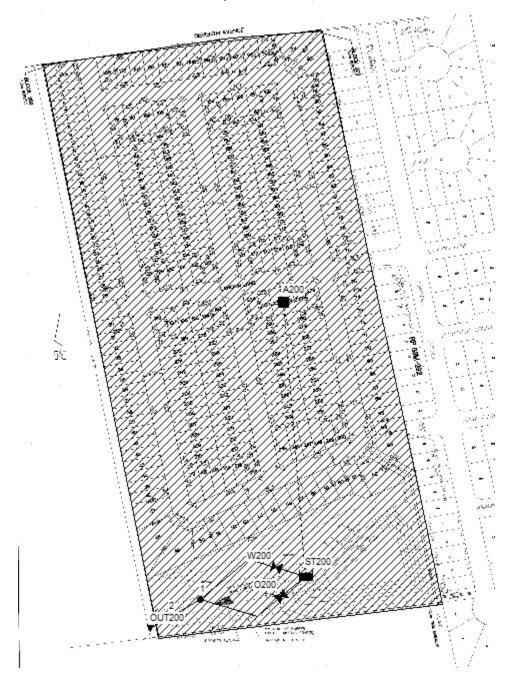
www.sbmltd.ca sbm@sbmltd.ca

Sanitary Sewer Design Sheet Municipality of Central Elgin

Single Family Units: 236 Semi-Detached Units: 48


Design Critera (Litres/capita/day) 400 Sewage Infiltration (Litres/hectare/day) 17280 Harmon Formula (Peaking Factor) M = (1 + 14/(4+P^0.5))

	Locat	ion		Ar	ea						Sewag	e Flows			Sev	wer desi	gn				Profile	Design		
Area No.	Street Name	From MH	To MH	Delta Hectare	Total Hectare	People Per Unit	No. of Units	*Delta Pop.	Total Pop.	Harmon Peaking Factor	Infilt L/S	Sewage L/S	Total L/S	n	Pipe Slope %	Dia. mm	Capacity L/S	Velocity m/s	Length m	Fall in Sewer	Headloss	Drop in U.S. MH	U.S. Invert	D.S. Invert
Total Site Area		Phase 6 Lands	Existing Sanitary Stub	16.34	16.34	3.5	284	994	994	3.80	3.27	17.49	20.76	0.013	0.28%	250	31.49	0.64				-		


Appendix C:

Pre and Post-Development Catchment Area Plans EPASWMM 5 Output Files (2 and 100 Year Pre and Post-Development)

Pre-Development Catchment Area

Post-Development Catchment Area

Belmont Subdivision

NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.

Analysis Options

Flow Units CMS

Process Models:

Water Quality NO
Infiltration Method CURVE NUMBER

Flow Routing Method DYNWAVE

Antecedent Dry Days 0.0

 Report Time Step
 00:01:00

 Wet Time Step
 00:05:00

 Dry Time Step
 00:05:00

 Routing Time Step
 30.00 sec

Variable Time Step YES Maximum Trials 8
Number of Threads 1

Head Tolerance 0.001500 m

**************************************	Volume hectare-m 0.654 0.000 0.363 0.262 0.030 -0.262	Depth mm 33.245 0.000 18.466 13.334 1.533
**************************************	Volume hectare-m	Volume 10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.262	2.621
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.254	2.541
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.008	0.080
Continuity Error (%)	0.019	

None

All links are stable.

Minimum Time Step : 29.50 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.00

Total Total Total Total Total Total Peak Runoff Precip Runon Evap
Runoff Runoff Coeff Infil Subcatchment mm mm mm mm mm 10^6 ltr CMS _____ 33.25 0.00 0.00 18.47 A200 13.33 2.62 1.22 0.401

		Average	Maximum	Maximum	Time of Max
Reported Max Depth		Depth	Depth	HGL	Occurrence
Node Meters	Туре	Meters	Meters	Meters	days hr:min
1	JUNCTION	0.11	0.41	257.26	0 03:18
0.41 OUT200 0.00	OUTFALL	0.00	0.00	254.50	0 00:00
ST200 0.58	STORAGE	0.12	0.58	257.43	0 03:08

			Maximum	Maximum		
Lateral	Total	Flow	Hazimani	Hazzinani		
			Lateral	Total	Time of Max	
Inflow	Inflow	Balance				
7	7	_	Inflow	Inflow	Occurrence	
Volume Node	Volume	Error Type	CMS	CMS	days hr:min	10^6
ltr 10^	6 ltr	Percent				
1		JUNCTION	0.000	0.079	0 01:18	
0 2	.54	0.133				
OUT200		OUTFALL	0.000	0.075	0 03:18	
-	.54	0.000				
ST200		STORAGE	1.224	1.224	0 01:05	
2.62	2.62	0.000				

No nodes were surcharged.

No nodes were flooded.

Max	Time of Max	Average Maximum	Avg	Evap	Exfil	Maximum
nax	TIME OF HAX	Volume	Pcnt	Pcnt	Pcnt	Volume
Pcnt Stor	Occurrence age Unit	Outflow 1000 m3	Full	Loss	Loss	1000 m3
Full	days hr:min	CMS				
ST20	0	0.368	3	0	0	1.880

13 0 03:08 0.079

	Flow Freq	Avg Flow	Max Flow	Total Volume
Outfall Node	Pcnt	CMS	CMS	10^6 ltr
OUT200	98.59	0.010	0.075	2.541
Svstem	98.59	0.010	0.075	2.541

 Max/		Maximum	Time of Max	Maximum	Max/
Full		Flow	Occurrence	Veloc	Full
Link Depth	Туре	CMS	days hr:min	m/sec	Flow

2	CONDUIT	0.075	0	03:18	0.12	0.08
0.23						
0200	ORIFICE	0.079	0	01:18		
1.00						
W200	WEIR	0.000	0	00:00		
0.00						

Adjusted ------ Fraction of Time in Flow

Class -----
/Actual Up Down Sub Sup Up Down

Norm Inlet
Conduit Length Dry Dry Dry Crit Crit Crit

Ltd Ctrl

1.00 0.01 0.00 0.00 0.00 0.00 0.09

0.00 0.00

No conduits were surcharged.

Analysis begun on: Fri Mar 08 08:15:41 2019 Analysis ended on: Fri Mar 08 08:15:41 2019

Total elapsed time: < 1 sec

Belmont Subdivision

NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.

Analysis Options ********

Process Models:	
Rainfall/Runoff	YES
RDII	NO
Snowmelt	NO
Groundwater	NO
Flow Routing	YES
Ponding Allowed	YES
Water Quality	NO

Flow Units CMS

Infiltration Method CURVE NUMBER

Flow Routing Method DYNWAVE

Antecedent Dry Days 0.0

Report Time Step 00:01:00

Wet Time Step 00:05:00

Dry Time Step 00:05:00

Routing Time Step 30.00 sec

Variable Time Step YES Maximum Trials 8
Number of Threads 1

Head Tolerance 0.001500 m

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	1.509	76.749
Evaporation Loss	0.000	0.000
Infiltration Loss	0.564	28.693
Surface Runoff	0.920	46.792
Final Storage	0.030	1.529
Continuity Error (%)	-0.344	
*****	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
also also de		

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.920	9.199
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.910	9.099
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.010	0.099
Continuity Error (%)	0.013	

None

All links are stable.

Minimum Time Step : 29.50 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.00

Total Total Total Total Total Total Peak Runoff
Precip Runon Evap
Runoff Runoff Coeff Infil mm Subcatchment mm mm mm mm 10^6 ltr CMS _____ 76.75 0.00 0.00 28.69 A200 46.79 9.20 3.67 0.610

	Average	Maximum	Maximum	Time of Max
	3		HGI.	Occurrence
Marro o	-	-	-	
туре	Meters	Meters	Meters	days hr:min
JUNCTION	0.19	0.62	257.47	0 03:49
OUTFALL	0.00	0.00	254.50	0 00:00
STORAGE	0.33	1.72	258.57	0 03:37
	OUTFALL	JUNCTION 0.19 OUTFALL 0.00	Depth Depth Type Meters Meters JUNCTION 0.19 0.62 OUTFALL 0.00 0.00	Depth Depth HGL Type Meters Meters Meters JUNCTION 0.19 0.62 257.47 OUTFALL 0.00 0.00 254.50

			Maximum	Maximum				
Lateral	Total	Flow						
			Lateral	Total	Time of Max			
Inflow	Inflow	Balance	_ 63	_ 67				
			Inflow	Inflow	Occurrence			
Volume	Volume	Error						
Node		Type	CMS	CMS	days hr:min	10^6		
ltr 10	^6 ltr	Percent						
1		JUNCTION	0.000	0.191	0 03:35			
0	9.1	0.053						
OUT200		OUTFALL	0.000	0.191	0 03:49			
0	9.1	0.000						
ST200		STORAGE	3.673	3.673	0 01:05			
9.2	9.2	0.000						

No nodes were surcharged.

No nodes were flooded.

		Average	Avg	Evap	Exfil	Maximum	
Max	Time of Max	Maximum					
		Volume	Pcnt	Pcnt	Pcnt	Volume	
Pcnt	Occurrence	Outflow					
Storage Unit		1000 m3	Full	Loss	Loss	1000 m3	
Full	days hr:min	CMS					
ST20	00	1.157	8	0	0	6.787	
47	0 03:37	0.191					

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CMS	CMS	10^6 ltr
OUT200	99.00	0.035	0.191	9.099
System	99.00	0.035	0.191	9.099

 Max/		Maximum	Time of Max	Maximum	Max/
		Flow	Occurrence	Veloc	Full
Full Link Depth	Туре	CMS	days hr:min	m/sec	Flow

2	CONDUIT	0.191	0	03:49	0.18	0.21
0.35						
0200	ORIFICE	0.191	0	03:35		
1.00						
W200	WEIR	0.000	0	00:00		
0.00						

Adjusted ------ Fraction of Time in Flow

Class ----
/Actual Up Down Sub Sup Up Down

Norm Inlet
Conduit Length Dry Dry Dry Crit Crit Crit

Ltd Ctrl

1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00

No conduits were surcharged.

Analysis begun on: Fri Mar 08 08:13:17 2019 Analysis ended on: Fri Mar 08 08:13:17 2019

Total elapsed time: < 1 sec