

Wastell Homes

Geotechnical Report

FINAL

Project Name: George Street, Port Stanley

Project Number: LON00014790-GE

Prepared by: exp Services Inc. 15701 Robin's Hill Road London, ON N5V 0A5 Canada

Date: July 14, 2017 Updated August 29, 2017 Client: Wastell Homes Project Name: Final Geotechnical Report Project Location: George Street, Port Stanley, ON Project Number: LON00014790GE Date: August 29, 2017

Wastell Homes

Type of Document: Final Report

Project Name: George Street, Port Stanley

Project Number: LON00014790

Prepared by: exp Services Inc. 15701 Robin's Hill Road London, ON, N5V 0A5 Canada T: +519.963.3000 F: +519.963.1152 www.exp.com

batevert Wickie

Vickie J. Coatsworth, P. Eng. Geotechnical Services

Idib Sadoun, M. Sc., P. Eng. Senior Engineer, Geotechnical Services

Date Submitted: August 29, 2017 Client: Wastell Homes Project Name: Final Geotechnical Report Project Location: George Street, Port Stanley, ON Project Number: LON00014790GE Date: August 29, 2017

Legal Notification

This report was prepared by exp Services Inc. for the account of Wastell Homes.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Client: Wastell Homes Project Name: Final Geotechnical Report Project Location: George Street, Port Stanley, ON Project Number: LON00014790GE Date: August 29, 2017

Table of Contents

Wastel	I Homes	i
Legal N	lotification	ii
Table c	of Contents	;iii
1.	Introducti	on1
1.1 Teri	ms of Refer	ence1
1.2	Previous V	Vork
2.	Methodolo	ogy3
3.	Site and S	ubsurface Conditions4
3.1	Site Descri	iption4
3.2	Site Physic	ography4
3.3	Soil Stratig	raphy4
	3.3.1	Topsoil4
	3.3.2	Sandy Silt5
	3.3.3	Clayey Silt5
	3.3.4	Sand and Gravel5
	3.3.5	Peat5
3.4	Groundwa	ter Conditions5
3.5	Methane G	6as
4.	Discussio	n and Geotechnical Recommendations7
4.1	General	
4.2	Residentia	I Foundations – Areas '1', '2' and '3'7
	4.2.1	Site Preparation7
	4.2.2	Foundations and Basements
4.3	Residentia	I Foundations – Area '4'9
	4.3.1	Stiffened Slab Foundation9
	4.3.2	Foundation Preloading10
4.4	Area '5'	
4.5	General Ex	cavation and Dewatering Comments11
4.6	Site Servic	ing12

4.7	Preliminary Pavement Design	13
4.8	Curbs and Sidewalks	14
5.	General Comments	15
Drawing	gs	16
Append	lix A – Borehole and Test Pit Logs	26
Golder	Borehole Logs	28
Ехр Во	rehole and Test Pit Logs	53
Append	lix B – Limitations and Use of Report	79

1. Introduction

As requested, **exp** has provided a final geotechnical report for the site located at George Street in Port Stanley, Ontario. This report summarizes the findings of all other work that **exp** has conducted for the client at this site.

The subject site is located along the north side of George Street, just east of the River Road intersection in Port Stanley, Ontario. A golf course exists to the north, and vacant commercial/industrial land is located to the east.

The site encompasses an area of about 24 hectares. The site is characterized by generally flat land within the south, centre and northern portions of the property. A 30 metre high slope traverses the northwestern quadrant of the site, with a table land area of about 1 hectare atop the slope at the northwest corner of the site. The slope and table land are covered with mature trees and heavy brush. A ridge also intrudes the eastern portion of the site, the north side of which is steeply sloped and surfaced with trees and brush. The remaining southern, central and northeastern portions of the site are generally characterized by low lying flat land, currently used for agricultural purposes.

It is proposed to develop the site for residential use.

1.1 Terms of Reference

Exp was retained by Wastell Homes, Ontario (client) to provide a final report from the various investigations and reports provided by **exp** at this site.

The purpose of the investigations was to examine the subsoil and groundwater conditions at the site by advancing a series of sampled boreholes and test pits at the locations illustrated on the attached Site Plan (**Drawing 1**). A slope stability assessment was also provided for the site and is addressed under a separate report.

Based on an interpretation of the factual test hole data, and a review of soil and groundwater information from test holes advanced at the site, **exp** has provided engineering guidelines for the preliminary geotechnical design of the proposed residential subdivision. More specifically, this report provides preliminary comments on excavations, site preparation, foundations, bedding, backfill, pavement design, slope stability assessment, and preliminary environmental comments.

This report is provided based on the terms of reference presented above and on the assumption that the design will be in accordance with applicable codes and standards. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning geotechnical aspects of the codes and standards, this office should be contacted to review the design.

The information contained in this report in no way reflects on the environmental aspects of the soil. Should specific information in this regard be needed, additional testing may be required.

1.2 Previous Work

Several geotechnical investigations have been conducted for this site. Two were by Golder Associates Ltd. in April 1989 and July 1990, referenced 891-3089 and 901-3098, respectively. Borehole and test pit logs from the Golder investigations are provided in **Appendix A**. The locations of these test holes are shown on **Drawing 1**, Site Plan.

In November 2008 and February 2009 **exp** (Trow) conducted a preliminary geotechnical investigation for the development of the property.

A geotechnical desk top review was conducted by **exp** (Trow) in December 2009 along with a supplemental preliminary geotechnical investigation for the development of the property. Report Ref: LNGE00009968A was issued in February 2010 and revised in March 2010.

The fieldwork for the two investigations by **exp** (Trow) listed above are summarized below:

- November 8, 2008 twenty-two (22) boreholes at the locations denoted on Drawing1 as BH08-1 to BH08-22 inclusive; and
- December 22, 2009 eight (8) boreholes at the locations denoted on Drawing 1 as BH09-1 to BH09-8, inclusive. The boreholes were drilled in the central portion of the site to confirm past findings.

2. Methodology

For the current investigation done on July 21 and 22, 2016, thirty-seven (37) test pits and five (5) monitoring wells were excavated. The test pits are designated as TP1 through TP37 while the monitoring wells are designated as MW1 to MW5 inclusive on **Drawing 1**.

The test pits were excavated to depths which ranged from 3.0 to 5.0 m below ground surface (bgs) using a locally sub-contracted excavator.

The monitoring wells were drilled using a subcontracted track-mounted drill rig, equipped with continuous flight solid stem augers, and termination depths were about 6.6 m. Within the boreholes, Standard Penetration Tests (SPTs) were performed to assess the compactness or consistency of the underlying soils and to obtain representative samples. During the drilling, the stratigraphy in the boreholes was examined and logged in the field by **exp** geotechnical personnel.

Representative samples of the various soil strata encountered at the test locations were taken to our laboratory in London for further examination by a geotechnical engineer and laboratory classification testing. Laboratory testing for this investigation comprised of routine moisture content determinations; results presented on the Borehole and Test Pit Logs found in **Appendix A**.

Following the drilling, water levels were measured in the open boreholes, and then monitoring wells were installed to assess the groundwater table. Two return trips were made on July 21 and August 1, 2016 to record water levels.

3. Site and Subsurface Conditions

3.1 Site Description

The subject site is located along the north side of George Street, just east of the River Road intersection in Port Stanley, Ontario. A golf course exits to the north, and vacant commercial/industrial land is located to the east.

The site encompasses an area of about 24 hectares. The site is characterized by generally flat land within the south, centre and northern portions of the property. A 30 metre high slope traverses the northwestern quadrant of the site, with a table land area of about 1 hectare atop the slope at the northwest corner of the site. The slope and table land are covered with mature trees and heavy brush. A ridge also intrudes the eastern portion of the site, the north side of which is steeply sloped and surfaced with trees and brush. The remaining southern, central and northeastern portions of the site are generally characterized by low lying flat land, currently used for agricultural purposes.

3.2 Site Physiography

Overburden deposits in the study area were formed by numerous glacial events during the Wisconsinan ice age approximately 15,000 to 25,000 years ago. Thick glacial ice advanced several times into the southern part of the province and then receded creating the present configuration of moraines, abandoned spillways, drumlins, eskers, and various still water sediments.

The surficial deposits were mapped and categorized into physiographic regions by Chapman and Putnam (1984). The site is situated within the physiographic region known as the Norfolk Sand Plain. The sands and silts of the Norfolk Sand Plain were deposited as a delta in glacial Lakes Whittlesey and Warren. Typically, silt or clay strata or beds of boulder clay occur within 30 ft of the surface.

Bedrock mapping for the area indicates the study area is generally underlain by limestone, dolostone, and shale (Marcellus Formation) of the Middle Devonian Era.

3.3 Soil Stratigraphy

The detailed stratigraphy encountered in each test hole and the results of routine laboratory tests carried out on representative samples of the subsoils are given in the Borehole and Test Pit Logs found in **Appendix A**, and summarized in the following paragraphs. The findings are generally consistent with the past studies. It must be noted that boundaries of soil indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect transition zones for the purposes of geotechnical design and should not be interpreted as exact planes of geological change. One cross section has been done to show the stratigraphy in the boreholes:

• Cross Section A – 'A' runs west to east through the property fronting onto George Street.

The Cross Section is provided as **Drawing 2**.

3.3.1 Topsoil

Each borehole was surfaced with a layer of topsoil. The topsoil, generally described as brown, soft, moist sandy silt loam, extended to depths ranging between about 250 mm and 500 mm.

It should be noted that topsoil quantities should not be established from the information provided at the borehole locations only. If required, a more detailed analysis (involving shallow test pits) is recommended to accurately quantify the amount of topsoil to be removed for construction purposes.

3.3.2 Sandy Silt

The predominant natural soil encountered beneath the topsoil was alluvial sandy silt. The sandy silt was generally described as brown becoming grey with depth, with trace to some clay, and very loose to loose, based on observed drill resistance and Standard Penetration Test (SPT) N Values of 1 to 10. *In situ* moisture contents of the sandy silt soils ranged between about 14.2 and 48.5 percent, indicative of very moist to wet conditions.

BH09-3 was the only borehole to encounter very stiff to hard soils below a depth of 4.6 m.

3.3.3 Clayey Silt

With depth, the clay content in the sandy silt increased to become deposits of clayey silt within boreholes BH09-2, BH09-4 and BH09-8. The clayey silt was generally described as grey, with trace sand and gravel, very soft to firm (based on SPT N Values of 1 to 6) and wet, based on *in situ* moisture contents that ranged between about 28.1 and 43.5 percent. Shear vane tests done in this deposit at Borehole BH09-2 at depths of 4.6 and 6.1 m had Sensitivity Values of 2.0 and 2.4 respectively.

3.3.4 Sand and Gravel

A layer of sand and gravel was encountered at BH09-4 at a depth of 5.6 m. The sand and gravel was grey, compact (SPT N Value of 21) in consistency and moist (*in situ* moisture content of 11.3 percent).

3.3.5 Peat

Boreholes BH09-5 to BH09-8 inclusive, encountered and were terminated in a peat layer. The peat was black in colour, and very loose to loose (based on tactile observations and a SPT N Value of 5). The *in situ* moisture content of the peat (presented graphically on the Borehole Logs) ranged between about 93.4 and 110.4 percent, indicating wet soil conditions.

3.4 Groundwater Conditions

Observations of groundwater conditions during the 2016 investigation and measured depths to the groundwater are provided on the Test Pit Logs found in **Appendix A**.

During the excavating, groundwater was encountered within all of the test pits at depths which ranged between about 1.7 m to 2.7 m below existing grades. It is noted that insufficient time was available to establish the depth to the stabilized groundwater table prior to backfilling the test pits.

The depth to the groundwater table may vary in response to climatic or seasonal conditions, and, as such, may differ at the time of construction, with higher levels in wet seasons. Capillary rise effects should also be anticipated within fine grained soil deposits.

Measured groundwater levels in the monitoring wells installed in July 2016 are summarized in the table below and on the borehole logs found in **Appendix A**.

	Water Level, m										
Monitoring Well	July 21	l, 2016	August 1, 2016								
-	Depth, bgs	Elevation	Depth, bgs	Elevation							
MW1	2.0	181.3	2.2	181.1							
MW2	2.0	180.0	2.4	179.6							
MW3	2.0	180.7	2.1	180.6							
MW4	4.2	181.5	3.6	182.1							
MW5	2.4	180.0	2.5	179.9							

Table 1 – Groundwater Levels Recorded in the Monitoring Wells

3.5 Methane Gas

No significant readings of methane gas were detected in the open boreholes at the time of drilling.

4. Discussion and Geotechnical Recommendations

4.1 General

It is understood that the proposed development will consist primarily of single family residential dwellings. The residential development is expected to have complete municipal servicing (extending into the site from George Street), and will be accessed with paved local roads.

The following sections of this report provides geotechnical comments and recommendations regarding site preparation, excavations and dewatering, foundations and basement design, site servicing and pavement design requirements.

Based on the results of **exp**'s investigation, the predominant soils encountered within the flat, lowlying areas of the site are loose/soft, wet deposits of silt, sand and clay which overlie glacial till at depth (as indicated in the Golder Borehole logs). The loose/soft and wet alluvial deposits will generally not support conventional strip and spread foundations without risk of excessive settlements. In addition, conventional construction of site services through loose/soft alluvial deposits may also result in undesirable vertical movement of the service piping.

Along with showing borehole and test pit locations **Drawing 1**, also delineates the site into areas that would require different foundational approaches based on the soils observed. It is noted that the extent of the Areas indicated have been inferred from the results of widely spaced test holes, and that verification of these extents would be required at the time of site grading. The various areas are discussed below.

4.2 Residential Foundations – Areas '1', '2' and '3'

In general, Areas 1 and 2 encompass areas of the site where competent glacial till soils were encountered within about 1.8 m depth of existing grades. These areas are generally well drained, and can support single family residences with basements founded on conventional strip and spread footings.

Area '3' encompasses a portion of the site where competent bearing soils were encountered at depths ranging between about 1.8 m and 3.5 m below existing grades. Conventional construction of residential foundations can be carried out within this zone of the site provided the competent subgrade is reconstructed to the design Underside of Footing (USF) elevation.

Construction in these areas should be carried out in accordance with the following recommendations.

4.2.1 Site Preparation

Prior to placement of foundations, pipe bedding and/or engineered fill, all surficial topsoil, vegetation and/or otherwise deleterious materials should be stripped. Additional test holes would be required to determine quantities for cut/fill calculations, as deeper areas of topsoil or loose/soft alluvial deposits may be encountered in areas not directly assessed. The excavated materials may be stockpiled on site for possible reuse as landscaping fill.

Following the removal of the topsoil and/or soft/wet soils, and prior to fill placement, the exposed subgrade should be inspected by a geotechnical engineer. Any loose or soft zones noted in the inspection should be over-excavated and replaced with approved fill.

In the building areas where the grade will be raised, the fill material should be comprised of imported granular or other approved material. The fill material should be inspected and approved

by a geotechnical engineer, and should be placed in maximum 300 mm (12 inch) thick lifts and uniformly compacted to 100 percent Standard Proctor Maximum Dry Density (SPMDD). The geometric requirements for engineered fill are provided on **Drawing 3**.

Based on the *in situ* moisture contents recorded from the test hole samples, the excavated onsite soils from Areas '1' and '2' could be near the optimum moisture content for compaction. This material may be suitable for reuse as engineered fill but should be examined and approved by a geotechnical engineer prior to reuse. Where engineered fill in excess of 3 metres is required to achieve the design elevations, the engineered fill mat should consist entirely of granular material, approved by a geotechnical engineer.

Any material imported to the site for proposed use within the engineered fill mat should be examined for its overall suitability and approved by the geotechnical consultant prior to use onsite.

In situ compaction testing should be carried out during the fill placement to ensure that the specified compaction is being achieved.

4.2.2 Foundations and Basements

Within Areas '1', '2' and '3', the proposed residential units can be supported on conventional spread and strip footings founded below topsoil, fill or unsuitable soils on the natural competent subgrade soils, or engineered fill. For design of the footings, an allowable Serviceability Limit States (SLS) bearing pressure of 120 kPa (2,500 psf) can be used for footings set below a typical depth of approximately 1.2 m (4 ft) below existing grade. All footings exposed to seasonal freezing conditions should be protected from frost action by at least 1.2 m (4 ft) of soil cover or equivalent insulation.

Ideally, a minimum of 1 metre separation between the groundwater table and the basement floor slab should be maintained. In the event that less than 1 m is provided (at least 0.5 m above the water table), then the basement design and foundation construction should include water-proofing measures such as installation of a water-stop between the footings and foundation walls, and foundation wall backfill using low-permeability soils, perimeter weeping tiles and underfloor drains, dedicated pumps and sumps to a positive outlet. If less than 0.5 m of separation distance is available, full water-proofing on the slab and foundations would be required.

The basement floors can be cast slab-on-grade provided the subgrade is stripped of all topsoil and other obviously objectionable material. The subgrade should then be thoroughly proof-rolled. Any soft spots detected during the proof-rolling should be dug out and replaced with clean compactable excavated material, placed in accordance with the requirements outlined in the previous Section 4.2.1.

A minimum 200 mm (8 inch) thick compacted layer of 19 mm (³/₄ inch) clear stone should be placed between the prepared subgrade and the floor slab to serve as a moisture barrier.

All basement walls should be damp-proofed and must be designed to resist a horizontal earth pressure 'p' at any depth 'h' below the surface as given by the following expression:

$\mathbf{p} = \mathbf{K} \left(\gamma \mathbf{h} + \mathbf{q} \right)$

where:	p = lateral earth pressure in kPa (psf) acting at a depth h: K = earth pressure coefficient, assumed to be 0.45; γ = unit weight of backfill, a value of 20.4 kN/m ³ (130 pcf) may be assumed; h = depth to point of interest in m (ft) and, q = equivalent value of any surcharge on the ground surface.
	q – equivalent value of any succharge of the ground surface.

Where basements are constructed, installation of perimeter drains are required. The above expression assumes that the perimeter drainage system prevents the build-up of any hydrostatic pressure behind the wall. Suggestions for permanent perimeter drainage are given on **Drawing 4**.

4.3 Residential Foundations – Area '4'

In general, Area '4' encompasses the portion of the property fronting onto George Street and the central portion of the property. Existing elevations within Area 4 were similar to George Street. The results of the borehole investigation indicated that the soils within this area generally consisted of alluvial deposits of silt, sand and clay to depths in excess of 6 metres below existing grades. This area will <u>not</u> support the construction of residences on conventional strip and spread foundations without excessive differential and total settlements.

The fill for grading purposes around dwellings in Area '4' should be limited to 1.2 m. Based on the results of the investigation, Area 4 will support the construction of lightly loaded structures (i.e., maximum two storey residences) on shallow, stiffened, slab-on-grade foundations, with no basements, constructed in accordance with the following preliminary recommendations.

4.3.1 Stiffened Slab Foundation

In general, a stiffened slab foundation consists of a reinforced concrete slab-on-grade, with thickened sections beneath exterior and load-bearing walls, in lieu of footings. Provided the following preliminary recommendations are adhered to, a bearing pressure of 50 kPa can be used beneath the thickened slab sections, constructed on a minimum of 150 mm of granular fill as discussed below.

Ideally, a minimum of 1 metre separation between the groundwater table and the slab on grade should be maintained.

Prior to placement of foundations, all topsoil, peat and obvious deleterious soils must be removed from the footprint of the proposed structure. The subgrade should then be inspected by a geotechnical engineer and then thoroughly proof-rolled. Any soft spots detected during the proof-rolling should be excavated out and replaced with clean compactable excavated material, placed in accordance with the requirements outlined in **Section 4.2.1 Site Preparation**. The subgrade should be compacted prior to the placement of the structural fill. Due to inconsistent subsurface conditions encountered at the site and to minimize the total and deferential settlements, it is recommended that a single layer of geogrid should be placed between the subgrade and granular materials. The geogrid can be a Tensar Geogrid, biaxial geogrid BX-1200 reinforcement or equivalent. If unpredicted conditions are encountered during constructing, further measures to improve the soil conditions may be required.

The structural fill should consist of OPSS Granular 'A', and should be compacted to a minimum of 100 percent Standard Proctor Maximum Dry Density (SPMDD). The structural fill should also extend laterally beyond the edges of the proposed building footprint for a distance equal to the depth of structural fill beneath the footing. (See **Drawing 3 for details of Geometric Requirements for Foundations on Engineered Fill**).

In the event groundwater conditions preclude the compaction of the structural fill to the required density, a well-graded clear stone (such as HL4 stone), or recycled concrete could be used in lieu of OPSS Granular 'A'.

Construction of this nature with foundation depths of less than about 1.2 m will require additional protection against frost protection. For a stiffened slab-on-grade with an edge thickness of about 450 mm, a minimum of <u>50 mm</u> of rigid board extruded polystyrene insulation, such as DOW SM, should be provided, and should have a minimum lateral extension of 1.2 m. A minimum soil cover of 300 mm should be provided over the insulation. The insulation should be sloped in a manner that promotes groundwater drainage away from the foundation. Perimeter subdrains may be required due to site grading and groundwater conditions. Stiffened slab foundation with various existing grades are demonstrated on attached **Drawings 5, 6, and 7**.

4.3.2 Foundation Preloading

In general, where a grade raise of more than about 0.5 m is required, preloading of the residential building footprint may be required in order to facilitate soil improvement prior to placement of the stiffened slab-on-grade foundation, thereby reducing the potential for excessive total and differential settlements beneath the residential foundations. In general, preloading involves the placement of a surcharge over the development area with a bearing pressure equivalent to that of the proposed development. During and following the preload, settlements are achieved, and that overall settlement has stabilized. In order to accelerate the settlement and further reduce the risk of long term settlements, additional surcharge may also be provided.

The amount of preloading required for this site, if any, will vary depending upon the area of the site and the amount of grade raise required. Accordingly, ongoing liaison with this office will be required.

4.4 Area '5'

Based on the current information, building conventional residential foundations may not be feasible in this area but constructing medium size buildings supported on deep foundations could be feasible. To determine depths of competent soils and to provide recommendations for deep foundations, a few additional deep boreholes should be advanced across Area '5' once the precise building envelopes are established so that foundations can be designed.

4.5 General Excavation and Dewatering Comments

Side slopes of temporary excavations must conform to Regulation 213/91 of the Occupational Health and Safety Act of Ontario. The predominant silt, sand and clay soils encountered throughout the site are classified as <u>Type 3</u> soil. Temporary excavation sidewalls which extend through <u>Type 3</u> soils must be cut back at a maximum inclination of 1 horizontal to 1 vertical from the base of the excavation. The wet soils of Areas '4', and '5' are considered <u>Type 4</u> soils. Type 4 soils should have walls sloped from the base of the excavation with a maximum inclination of 3 horizontal to 1 vertical. Where groundwater egress is encountered, flatter slopes may be required.

Dilatant silt and sand will be susceptible to disturbance by construction traffic. It is recommended that construction traffic be minimized on the finished subgrade, and the subgrade be sloped to promote surface water drainage. Because some trafficability problems may be encountered for earth-scrapers in the low-lying areas, or where sensitive subgrade soils are exposed, tracked hydraulic excavators may be required to move some of the topsoil and fill material.

If imported fill material is utilized at the site, verification of the suitability of the fill may be required from an environmental standpoint. Conventional geotechnical testing will not determine the suitability of the material in this regard. Analytical testing and environmental site assessment may be required at the source. This will best be assessed prior to the selection of the material source. A quality assurance program should be implemented to ensure that the fill material will comply with the current MOECC standards for placement and transportation.

The disposal of excess excavated materials must also conform to the MOECC Guidelines and requirements. **Exp** can be of assistance if an assessment of the materials is required.

Groundwater infiltration should be anticipated within excavations into low lying areas, particularly from depths below about 1.7 metres below existing grades. Groundwater infiltration can likely be accommodated using conventional sump pumping techniques in Areas '1', '2', and '3'; however, more extensive dewatering measures will likely be required in Areas '4' and '5' and a Permit to Take Water will likely be required. Pretender test pits done prior to construction will give a better appreciation of the groundwater infiltration potential.

It is recommended that prior to tendering, a series of test pits should be dug to obtain a better appreciation of the behavior of excavations at design depths, and to provide additional input on dewatering requirements. Contractors (including specialist dewatering contractors) who might be involved in the job should witness these test pits. **Exp** can assist in observing and documenting the findings in the test pits.

For projects requiring positive groundwater control with a removal rate in excess of 50,000 litres per day, an Environmental Activity and Sector Registry (EASR) or a Permit to Take Water (PTTW) will be required. EASR's are required for dewatering volumes up to 400,000 litres per day. For volumes of 400,000 litres or more per day, PTTW applications will need to be approved by the Ministry of Environment and Climate Change (MOECC) according to Sections 34 and 98 of the Ontario Water Resources Act R.S.O. 1990 and the Water Taking and Transfer Regulation O. Reg. 387/04. It is noted that a standard geotechnical investigation will not determine all the groundwater parameters which may be required to support the application.

4.6 Site Servicing

It is anticipated that municipal sanitary sewer and water services will be tied into existing infrastructure along George Street.

Water and sewer lines should be provided with a minimum 1.2 m (4 ft) of soil cover for frost protection.

The subgrade soils beneath the water and sewer pipes within Areas '1', '2' and '3' which service the site are generally expected to comprise of native silt, sand and clayey soils. For services constructed on the native soil or engineered fill, above a depth of approximately 1.7 m bgs. Localized base improvements may be required for services bedded in wet silty soils or deeper than 1.7 m bgs, particularly in wet weather seasons. Some areas of crushed stone bedding enclosed with a geotextile may be required. This is best determined onsite during construction by a geotechnical engineer. Bedding aggregate should also be placed around the pipe to at least 300 mm (12 inch) above the pipe, and be compacted to a minimum 95 percent SPMDD.

Base stability should not be an issue for Areas '1', '2', and '3' if the pipes are bedded on firm, competent soil above approximately 1.7 m bgs. However, if soft soil is excavated, bedding improvements may be required such as the incorporation of geotextile or subgrade enhancement (with stone). Additional information can be provided in this regard as site servicing design elevations become available.

Where site servicing is deeper than 1.7 m bgs, or extends to George Street crossing low-lying areas (including Areas '4'), the natural soils on site would not provide a stable base for bedding. The site servicing should be constructed beyond the zone of influence of any structures in order to minimize the potential for differential movements as a result of additional soil loading. In addition, grade raises along the services should be minimized to avoid surcharging soils in these areas. The natural material would be too wet to achieve adequate compaction with around the pipes and within the trenches. Standard backfill materials (Granular 'B') would be too heavy and cause consolidation and settlement of the natural soils below; therefore, a light weight fill such as Styrofoam or lightweight cellular concrete would be needed. The lightweight fill should be placed up to pavement subbase depth.

The trenches above the specified pipe bedding should be backfilled with inorganic soils placed in maximum 300 mm thick lifts and uniformly compacted to at least 95% SPMDD. A program of *in situ* density testing should be set up to ensure that satisfactory levels of compaction are achieved. If the depth of services is significantly lower than the groundwater table, the backfill load will need to be reduced by using a light weight fill. This will best be determined during construction.

Based on the results of this investigation, the majority of the excavated natural soils from Areas '1' and '2' may be used for construction backfill provided reasonable care is exercised in handling, and construction is carried out in favorable weather. In this regard the material should be within 3 percent of the optimum moisture as determined in the standard Proctor density test, and stockpiling of material for prolonged periods of time should be avoided. This is particularly important if construction is carried out in wet or otherwise adverse weather. It should be noted that peat soils would not be suitable for pipe bedding or backfill use.

Soils excavated from below the stabilized groundwater table may be too wet for reuse as backfill unless adequate time is allowed for drying, or if the material is blended with approved dry fill; otherwise, it may be stockpiled onsite for reuse as landscape fill.

In Area '5', further investigation and/or studies may be required depending on the future development.

As noted previously, disposal of excavated materials off site should conform to current MOECC guidelines.

In addition to above, the following general recommendations are provided related to site servicing:

- The bedding should conform to OPS Standards.
- Peat pockets encountered at pipe inverts should be removed and replaced with proper soils. These are best determined onsite during construction by a geotechnical engineer.
- Sewers should be designed to tolerate settlement and differential settlements.
- 4.7 Preliminary Pavement Design

Areas to be paved should be stripped of all topsoil, organics and other obviously unsuitable material. The exposed subgrade must then be thoroughly proof-rolled. Any soft spots revealed by this or any other observations must be over-excavated and backfilled with approved material. All fill required to backfill service trenches, or to raise the subgrade to design levels must conform to requirements discussed previously. Preferably, the natural inorganic excavated soils should be used to maintain uniform subgrade conditions, provided adequate compaction can be achieved.

Provided the preceding recommendations are followed, the pavement thickness design requirements given in Table 2 are recommended for the anticipated specified street classifications and subgrade conditions.

Pavement Layer	Compaction Requirements	Local Road	Collector Road
Asphaltic Concrete	97% Marshall Density	35 mm HL-3 45 mm HL-8	45 mm HL-3 65 mm HL-8
Granular 'A' (Base)	100% SPMDD*	150 mm	150 mm
Granular 'B' (Subbase)	100% SPMDD*	350 mm^	450 mm^

 Table 2 – Recommended Pavement Structure Thickness

Notes: 1) SPMDD* denotes Standard Proctor Maximum Dry Density.

2) The subgrade must be compacted to 98% SPMDD.

3) The above recommendations are minimum requirements.

 Additional granular base may be required if the moisture content of the subgrade is high.

Other granular configurations may also be possible provided the granular base equivalency (GBE) thickness is maintained. These recommendations on thickness design are not intended to support heavy and concentrated construction traffic, particularly where only a portion of the pavement section is installed.

If construction is undertaken under adverse weather conditions (i.e., wet or freezing conditions) subgrade preparation and granular sub-base requirements should be reviewed by the geotechnical engineer. As well, if only a portion of the pavement will be in place during construction, the granular subbase may have to be thickened, and/or the subgrade improved with a geotextile separator.

Samples of both the Granular 'A' and Granular 'B' aggregates should be checked for conformance to OPSS 1010 prior to utilization on site, and during construction. The Granular 'B' subbase and the Granular 'A' base courses must be compacted to 100 percent SPMDD.

The asphaltic concrete paving materials should conform to the requirements of OPSS 1150. The asphalt should be placed in accordance with OPSS 310 and compacted to at least 97 percent of the Marshall mix design bulk density.

Good drainage provisions will optimize pavement performance. The finished pavement surface should be free of depressions and should be sloped (preferably at a minimum grade of two percent) to provide effective surface drainage toward catchbasins. Surface water should not be allowed to pond adjacent to the outside edges of pavement areas. In low areas, subdrains should be installed to intercept excess subsurface moisture and prevent subgrade softening, as shown on **Drawing 8**. This is particularly important in heavier traffic areas at the site entrances. The locations and extent of subdrainage required within the paved areas should be reviewed by this office in conjunction with the proposed grading.

A program of *in situ* density testing must be carried out to verify that satisfactory levels of compaction are being achieved.

To minimize the effects of differential settlements of service trench fill, it is recommended that wherever practical, placement of surface course asphalt should be delayed for two to three years. Prior to the surface asphalt being placed, it is recommended that a pavement evaluation be carried out on the base asphalt to identify repair areas or areas requiring remedial works prior to surface asphalt being placed.

A layer of geogrid could be required at Areas '4' and '5'. This is best determined onsite during construction by a proof rolling inspection by an **exp** representative.

4.8 Curbs and Sidewalks

The concrete for the curbs and gutters should be proportioned, mixed, placed and cured in accordance with the requirements of OPSS 353 and OPSS 1350.

During cold weather, the freshly placed concrete should be covered with insulating blankets to protect against freezing.

The subgrade for the sidewalks should comprise of undisturbed natural soil or well-compacted fill. A minimum 150 mm thick layer of compacted (100 percent SPMDD) Granular 'A' should be placed below the sidewalk slabs. Construction traffic should be kept off the placed curbs and sidewalks as they are not designed to withstand heavy traffic load.

5. General Comments

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current geotechnical conditions within the subject property. The conclusions and recommendations presented in this report reflect site conditions existing at the time of the investigation. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent. Should this occur, **exp** Services Inc. should be contacted to assess the situation, and the need for additional testing and reporting. **exp** has qualified personnel to provide assistance in regards to any future geotechnical and environmental issues related to this property.

Our undertaking at **exp**, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession.

The comments given in this report are intended only for the guidance of design engineers. The number of test holes required to determine the localized underground conditions between test holes affecting construction costs, techniques, sequencing, equipment, scheduling, etc. would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

Exp Services Inc. should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not afforded the privilege of making this review, **exp** Services Inc. will assume no responsibility for interpretation of the recommendations in this report.

This report was prepared for the exclusive use of **Wastell Homes** and may not be reproduced in whole or in part, without the prior written consent of **exp**, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Drawings

- Topsoil quantities should not be established from the information provided at the test hole locations.

The site plan was reproduced from drawing provided by client and should be read in conjunction with exp consolidated Geotechnical Report LON-00014790-GE.

Proposed Residential Development George Street, Port Stanley, Ontario

	CLIENT	Wastell House	•			
	111.E	Borehole & Mo	onitoring Well Lo	ocat	ion Plan	
	DRAWN BY	E.B.		REVIE	V.C.	
E.B.		xp.	15701 Robin	's H	exp Services Inc. ill Road, London, ON, N5V 0A5	
	date A	UGUST 2017	scale NTS		PROJECT NO. LON-00014790-GE	ржа. 1

NOTES FOR ENGINEERED FILL PLACMENT:

- The area must be stripped of all topsoil contaminated fill material, and other unsuitable soils, and proof rolled. Soft spots must be dug out. The stripped native subgrade must be examined and approved by an exp Engineer prior to placement of engineered fill.
- 2. In areas where engineered fill is placed on a slope, the fill should be benched into the approved subgrade soils. **Exp** would be pleased to provide additional comments and recommendations in this regard, if required.
- 3. All excavations must be carried out in accordance with the Occupational Health and Safety Regulation of Ontario (Construction Projects O.Reg. 213.91)
- 4. Material used for engineered fill must be free of topsoil, organics, frost and frozen material, and otherwise unsuitable or compressible soils, as determined by a Geotechnical Engineer. Any material proposed for use as engineered fill must be examined and approved by **exp**, prior to use onsite. Clean compactable granular fill is preferred. The imported fill should be reviewed to satisfy MOECC Requirements.
- 5. Approved engineered fill should be placed in maximum 300 mm thick lifts, and uniformly compacted to 100% Standard Proctor dry density throughout. For best compaction results, engineered fill should be within 3 percent of its optimum moisture content, as determined by the Standard Proctor density test.
- 6. Full time geotechnical monitoring, inspection and *in situ* density (compaction) testing by **exp** is required during placement of the engineered fill.
- 7. Site grades should be maintained during area grading activities to promote drainage, and to minimize ponding of surface water on the engineered fill mat. Rutting by construction equipment should be kept to a minimum, where possible. Additional work to ensure suitability of engineered fill may be required if fill is placed in extreme (hot/cold) weather.
- 8. The fill must be placed such that the specified geometry is achieved. Refer to sketches (previous page) for minimum requirements. Proper environmental protection will be required, such as providing frost penetration during construction, and after the completion of the engineered fill mat.
- 9. An allowable bearing pressure (SLS) of 120 kPa (2,500 psf) may be used for foundations set on engineered fill, provided that all conditions outlined above, and in the Geotechnical Report are adhered to.
- 10. These guidelines are to be read in conjunction with the attached Geotechnical Report (**exp** Project No. LON-00014790-GE).
- 11. Footing Base inspections are required to verify the suitability of the subgrade soils, at the time of construction. *In situ* density tests may also be required at the footing base level to confirm material density.

- 1. Perforated or slotted pipe placed about 300 mm below the upper level of the basement floor slab;
- 2. Unperforated drain pipe connected to a positive sump; connect to appropriate trap and backwater valve before connecting to sewer, where applicable. Provide appropriate access to the trap for inspection and cleaning;
- 3. Filter material that is compatible with the grain size characteristics of the foundation and backfill soils, as well as the perforations of the pipe;
- 4. Filter material continuously or intermittently placed next to the foundation wall to intercept water from window wells and low areas near building (see also 6);
- 5. Damp-proofing on wall;
- 6. Use of sheet drain or synthetic filter blanket next to foundation wall as per OBC to replace the soil filter described in 4;
- 7. Foundation and backfill soils, which may contain fine grain and erodible materials; and,
- 8. "Topping-off" material, graded away from the building to redirect surface water from the foundations. Low permeability soils, or concrete or asphalt, are preferred.
- 9. As illustrated in left figure above, provide continuous geomembrane product beneath slab and footings where prevailing groundwater levels may be higher than basement floor slab elevation; extend geomembrane up to existing grade along exterior face of foundation wall.

Reference: Canadian Geotechnical Society 2006, Canadian Foundation Engineering Manual, 4th Edition, (Figure 12.1, p184).

1. Install geogrid between the subgrade and structural fill as required during construction.

 The drawing should be read in conjunction with exp consolidated Geotechnical Report LON-00014790-GE. Final Geotechnical Investigation **Proposed Residential Development** George Street, Port Stanley, Ontario

_						
CLIENT	Wastell House	1				
TTLE	Case 1 - Slab	Foundation Abo	ve	Sloping Grade		
DRAWN BY	E.B.		REVIE	NED BY I.S.		
*e	xp.	15701 Robin	s⊢	exp Services Inc. iill Road, London, ON, N5V 0A5		
date A	UGUST 2017	SCALE NTS		PROJECT NO. LON-00014790-GE	DWG.	5

1. Install geogrid between the subgrade and structural fill as required during construction.

 The drawing should be read in conjunction with exp consolidated Geotechnical Report LON-00014790-GE. Final Geotechnical Investigation **Proposed Residential Development** George Street, Port Stanley, Ontario

CLIENT	Wastell House	Wastell House										
TILE	Case 3 - Slab	Foundation Belo	ow (Grade								
DRAWN	E.B.		REVIE	wed by I.S.								
ॐ€	exp.	15701 Robin	's H	exp Services Inc. iill Road, London, ON, N5V 0A5								
DATE	AUGUST 2017	SCALE NTS		PROJECT NO. LON-00014790-GE	^{DWG.} 7							

Appendix A – Borehole and Test Pit Logs

NOTES ON SAMPLE DESCRIPTIONS

All descriptions included in this report follow the 'modified' Massachusetts Institute of Technology (M.I.T.) soil classification system. The laboratory grain-size analysis also follows this classification system. Others may designate the Unified Classification System as their source; a comparison of the two is shown for your information. Please note that, with the exception of those samples where the grain size analysis has been carried out, all samples are classified visually and the accuracy of the visual examination is not sufficient to differentiate between the classification systems or exact grain sizing. The M.I.T. system has been modified and the **exp** classification includes a designation for cobbles above the 75 mm size and boulders above the 200 mm size.

	T				Sand		Gra	Cabbles	
CLASSIFICATION	Fines (silt and c	ay)		Fine	Medium	Coarse	Fine	Coarse	Coooles
MITSON	~			Sa	nd				·
CLASSIFICATION	Clay	Silt	Fi	ne Medi	um Coarse		Gra	ivel	
	Sieve Sizes	1	5	3	0	• _		4	
		-	0	4	4	- 7	· · · · ·	ກ !	
	Particle Size (mm)	- 700 0	- 90'0	02-	- 9.0	2.0-	8	-07 8	

- 2. Fill: Where fill is designated on the borehole log, it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description therefore, may not be applicable as a general description of the site fill material. All fills should be expected to contain obstructions such as large concrete pieces or subsurface basements, floors, tanks, even though none of these obstructions may have been encountered in the borehole. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact and correct composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. The fill at this site has been monitored for the presence of methane gas and the results are recorded on the borehole logs. The monitoring process neither indicates the volume of gas that can be potentially generated or pinpoints the source of the gas. These readings are to advise of a potential or existing problem (if they exist) and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic waste that renders the material unacceptable for deposition in any but designated land fill sites; unless specifically stated, the fill on the site has not been tested for contaminants that may be considered hazardous. This testing and a potential hazard study can be carried out if you so request. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common, but not detectable using conventional geotechnical procedures.
- 3. Glacial Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process, the till must be considered heterogeneous in composition and as such, may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (75 to 200 mm in diameter) or boulders (greater than 200 mm diameter) and therefore, contractors may encounter them during excavation, even if they are not indicated on the borehole logs. It should be appreciated that normal sampling equipment can not differentiate the size or type of obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited area; therefore, caution is essential when dealing with sensitive excavations or dewatering programs in till material.

Golder Borehole Logs

	LOC	ATIC IPLEI	N - SEE FIGURE 1 R.HAMMER, 140b; DROP, 30in SOIL PROFILE		F	RE()R B(D. OF BOREHOLE DRING DATE MAR 30, 1990 PENETRATION TO DYNAMIC PENETRATION	1 SHEET 1 DATUM GEODETIC: ST. HAMMER, 1401b; DROP, 30in
DEPTH SCALE		BORING METHC	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	түре	BLOWS/FT.	RESISTANCE, BLOWS/FT	k, CM/SEC PIEZOMETER water content, percent OR wp W 10 20 30 40
	POWER AUGER	(HOLLOW STEM)	GROUND SURFACE Brown silty TOPSOIL Compact mottled brown SANDY SILT occ. clayey silt layers Firm brown SILTY CLAY Firm to very soft grey CLAYEY SILT trace organic material occ. shell fragments and sandy silt layers	51R/	(FT) 598.1 597.0 1.0 592.3 5.8 591.1 7.0		2* DO 2* DO 2* DO 2* DO 2* DO 2* DO 2* DO	111 5 5 2	rem.V @ U	0 10 20 30 40 Backfill
- 15			Loose grey SAND AND GRAVEL Very stiff to hard grey CLAYEY SILT trace sand occ.		<u>581.1</u> 17.0. <u>579.1</u> 19.0	5 8 7 8	2.	2 5 9		0 MH
- 25			gravel (IILL) occ. sandy silt layers END OF BOREHOLE		571.8	9 10	2*	23		O O WL ENCOUNTERED ATELEV. 597.1 DURING DRILLIN MAR. 30, 1990 WL IN STANDPIP AT ELEV. 596.3 APR. 8, 1990
- 35 DE	PTH		ALE						9 5 - 6 PERCENT AXIAL STRAIN AT FAILUP 10	LOGGED F.F.

ALE ALE	SOIL PROFILE			SA	MPLI	ES I	DYNAMIC PENETRATION C HYDRAULIC CONDUCTIVITY, RESISTANCE, BLOWS/FT C HYDRAULIC CONDUCTIVITY, k, CM/SEC	
DEPTH SC FEET BORING ME	DESCRIPTION	STRATA PLC	ELEV. DEPTH (FT)	NUMBER	TYPE	BLOWS/FT.	SHEAR STRENGTH Cu, LB/SQ.FT. rem.V \oplus U O 10 20 30 40	INSTALLATION
- 0 (() () () () () () () () ()	GROUND SURFACE Brown silty TOPSOIL Compact brown SANDY SILT trace clay occ. sand layers Compact to dense brown SAND AND GRAVEL trace silt Very stiff brown becoming grey about elev. 589 CLAYEY SILT trace sand Dense to compact grey SANDY SILT trace clay Very stiff to hard grey SILTY CLAY trace sand occ. gravel (TILL) END OF BOREHOLE		598.8 599:8 1.0 594.1 4.5 589.1 9.5 588.8 12.0 588.8 12.0		2 DO	13 14 31 28 41 29 24 24 60 68		Backfill S WL ENCOUNTERED AT ELEV. 597.6 DURING DRILLIN MAR. 30, 1990 WL IN STANDPIP AT ELEV. 598.6 APR. 6, 1990

	Ľ	OCATR	DN - SEE FIGURE 1 R HAMMER, 140b; DROP, 30in			}E (CC)R B	D OF BOREI ORING DATE MAR 30, PENETR	HOLE 1990 ATION TEST	3 SHEET 1 DATUM GE HAMMER, 1401b; DROP, 30In	ODETIC:		
	μ	HOH.	SOIL PROFILE	1.		SAI	MPL	E\$	DYNAMIC PENETRATION RESISTANCE, BLOWS/FT	<u> </u>	HYDRAULIC CONDUCTIVITY, k, CM/SEC	TI		
	DEPTH SCA FEET	BORING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	TYPE	BLOWS/FT.	SHEAR STRENGTH nat. Cu, LB/SO.FT. rem	V + Q ● .V ⊕ U Q	WATER CONTENT, PERCEN	ADDITIONAL LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION	
PROJECT 801-3088	- 0		GROUND SURFACE Brown silty TOPSOIL Very stiff brown CLAYEY SILT occ. topsoil	<u> </u>	<u>811.9</u> 818:9 1.0	1	2- DO	17					- Backfill	
	- 5		Very dense to dense brown becoming grey about elev. 602 SANDY SILT trace clay occ.	<u> </u>	<u>807.4</u> 4.5	2	2* DO 2* DO	52 44			0		- <u>-</u>	
	POWER AUGER	FOWER AUGER	gravel (TILL) occ. silty sand layers		507 4	4	2*	38 44			o			
	15 20		Dense to very dense grey SiLT trace to some clay occ. clayey silt layers			14.5	6 7 7 8	2*00	61 49 52			0		
	25				585.4	9 20		10)		0	-		
doorware have been advised as the company of the second second second second second second second second second	30		UND OF DOKERULE	na an a	20.5	TO SPY WIGHT IN THE SPY OF THE SP							WL ENCOUNTERED AT ELEV. 595.9 DURING DRILLING MAR. 30, 1990 WL IN STANDPIPE AT ELEV. 604.8 APR. 6, 1990	
-	35													
ľ					1				G G G K PERCENT AVIN ATT				n.	
ſ	DEP	TH SC.	ALE	<u> </u>	<u>I,</u>			Ľ	10	AL FAILURE	n menandununga and I		FF	
	1 inc	ch to	5 feet						Golder Associ	iates		CHECKE	DIF	
	LC SA	CATIC MPLE	N - SEE FIGURE 1 R HAMMER, 1401; DROP; Soin		F	}Ε	СС	BC	D OF BOREHOLE RING DATE MAR 30, 1990 PENETRATION TES	4 SHEET 1 DATUM & GEODETH ST HAMMER, 1401b; DROP, 301n	2			
--	-----------	---------------	--	-------------	------------------------	-----------	----------------------	---	--	--	---------------------------	--	--	--
	щ	đỗ	SOIL PROFILE			SA	MPLE	\$	DYNAMIC PENETRATION RESISTANCE, BLOWS/FT	HYDRAULIC CONDUCTIVITY, T				
	DEPTH SCA	BORING METI	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	TYPE	BLOWS/FT.	SHEAR STRENGTH Cu, LB/SO,FT. rem.V ⊕ U	WATER CONTENT, PERCENT WD W W 10 20 30 40	ADDITIONAL LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION		
CT 901-3098												-		
0 E C	_ 0		GROUND SURFACE		602.5									
Ä	- 0		Brown silty TOPSOIL	1	609:9							Backfill 🕅		
	- 5	POWER AUGER	Loose to compact brown SANDY SILT trace clay occ. gravel and topsoil		1.0	1	2* DO 2* DO	9 31		0 0 0				
Compact grey SANDY SILT trace to some clay occ. gravel (TILL) Very dense grey SILT														
	15		Very dense grey SILT END OF BOREHOLE		12.0 588.5 14.0	5	2" DO	72		o o		-		
a second and a second	20											WL ENCOUNTERED AT ELEV. 602.5 DURING DRILLING. MAR. 30, 1990 WL IN STANDPIPE AT ELEV. 600.1 APR. 6, 1990		
	25							s of the second				- - - -		
akana kana kana kana kana kana kana kan	30													
أحمد والمحمول والمحمول	35							1	0 6-9-6 PERCENT AXIAL STRAIN AT FAILUR					
	DEP	TH \$C	ALE					L	10	L.	OGGED	F.F.		
	t in	ch to	5 feet						Golder Associates		HECKE	DIFE		

	LC S/)CAT	ON - SEE FIGURE 1 ER HAMMER, 14015; DROP, 301n		P	}E(CO	BC	D OF I	BORE APR. 2, PENET	EHOLE 1990 IRATION TEST	5 Hamme	R, 1408	SHI DA D; DRO	EET. 1 TUM GEOI P. 30in	DETIC	
	DEPTH SCALE FEET	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	APLE TYPE	BLOWS/FT.	DYNAMIC PE RESISTANCE, SHEAR STRE Cu. LB/SO.F ¹	NETRATI BLOWS/I NGTH re	ON FT at.V + Q ● m.V ⊕ U O	HYDR/ WA	AULIC CI k, CN TER CO Wp	ONDUC M/SEC	PERCENT		PIEZOMETER OR STANDPIPE INSTALLATION
≡CT 901-3098	- - -		۰.														
PROJE	- 0	┝╌	GROUND SURFACE	<u>85</u>	599.5												Backfill 200
			Brown CLAYEY SILT occ. topsoil		0.3 597.5											-	
	- - - 5	ER AUGER	Very loose brown SILT trace to some sand		2.0	1	2• DO	4						ο			- <u></u>
	-	IMOd	Firm to very stiff brown becoming grey about elev. 591 CLAYEY SILT trace sand occ	· · · · · · · · · · · · · · · · · · ·	5.5	2	2* DO 2*	4					0	0			
	- 10 - 10 - Very dense grey SILT																
	15		Very dense grey SILT trace sand trace clay END OF BOREHOLE		12.0 585.5 14.0	5	2. DO	59					o				
	- 10																WL ENCOUNTERED AT ELEV. 597.5 DURING DRILLING APR. 2, 1990
	- 20							and an and a second									AT ELEV. 596.3 - APR. 6, 1990 -
an and the second s	- 25																-
															1997 - A Pri		
	30																-
	35																-
will some some								-	0 15-6-6 PERCENT	AXIAL STR	AIN AT FAU URE						-
	DEF	тн з	CALE		.			-['	10							LOGGE	DTIT
Consideration of the local division of the l	t in	ich te	o 5 feet						Golder	Asso	ciates		winners and an area		Children W DW 1200 have been	CHECK	ED T.T.

	L(ON - SEE FIGURE 1 R HAMMER, 1401; DROP, 30in			}E(CC	BO		OREH PR. 2, 1990 PENETRAT	OLE ION TEST	6 SHEET DATUM HAMMER, 14015; DROP, 3	1 GEODETIC	
_	CALE	ЕТНО	SOIL PROFILE	5		SA		ES	RESISTANCE, B	ETRATION LOWS/FT	2	HYDRAULIC CONDUCTIVIT k, CM/SEG	×. T _₹	
	DEPTH S FEET	BORING N	DESCRIPTION	STRATA PL	ELEV. DEPTH (FT)	NUMBER	түре	BLOWS/FT.	SHEAR STRENG Cu, LB/SQ.FT.	iTH nat.V rem.V	+ Q ● ⊕ U O	WATER CONTENT, PEI		OR STANDPIPE MINISTALLATION
901-3098	- - -		•											
ROJECT	0	 	GROUND SURFACE		600.2									
a.	-		Brown CLAYEY SILT	Л	0.4									Backfill
	- 5	DWER AUGER	Loose brown becoming grey about elev. 593 SANDY SILT occ. clayey silt layers		2.0	1	2* DO	4				0		
	- 10	d	Very loose grey SILT tr clay occ. shell and wood fragments and organic material	 Assumption of the second se Second second secon second second sec	590.7 9.5 588.2 12.0	3	2.00	3				o . o		
	- 15		Very stiff grey CLAYEY SILT trace sand occ. gravel (TILL)		583.7	5 [6 [19				0 0		Caved
والمحاوية والمحاولة	. 20		END OF BOREHOLE		18.5									WL ENCOUNTERED - AT ELEV. 598.2 DURING DRILLING. APR. 2, 1990 WL IN STANDPIPE AT ELEV. 599.1 - APR. 6, 1990
	25													
	30	an a												
	35													
1	DEP1	rH SC	ALE 5 feet		<u></u>			-1 ¹⁵⁻⁴	Golder A	SSOCIAT	FAILURE	1	LOGGE	ED F.F.

		OCATI AMPLE	DN - SEE FIGURE 1 R. HAMMER, 1401b; DROP. 30in			}E	CC)R) B(D OF BC DRING DATE APP	RE} . 2, 19 ENETR	IOLE 90 ATION TEST	7 Hammer,	SH DA 140lb; DRC	IEET 1 ITUM GEODI IP, 30în	ETIC	
	SCALE	иетнор	SOIL PROFILE	OT		SA	MPLE	ES	DYNAMIC PENET RESISTANCE, BLC	RATION WS/FT	Z.	HYDRAU	LIC CONDUC k, CM/SEC	TIVITY, -		PIEZOMETER
	DEPTH :	BORING N	DESCRIPTION	STRATA PI	ELEV. DEPTH (FT)	NUMBER	ТҮРЕ	BLOWS/FT	SHEAR STRENGTI Cu, LB/SQ.FT.	nat.) rem,	/ + 0 ● / ⊕ ∪ O	WATE WATE	R CONTENT	PERCENT	ADDITIO1 LAB. TES	OR STANDPIPE INSTALLATION
901-3098	- -															
PROJECT	_ 0		GROUND SURFACE _Brown_clayey_TOPSOIL	2	617.8											- - -
			Brown CLAYEY SILT trace sand occ. topsoil pockets	ł	0.3 615.8											Backfill -
		R		· · ¢ ·	2.0	1	2* DO	22					0		-	-
	- 5	OWER AUG	Very stift brown SILTY CLAY trace sand occ. gravel (TILL)			2	2• DO	25					0			-
		4 -		•0 ,		3	2. DO	24					0		-	
	- 10			<u>;</u>	605.8	4	2 - DO	25					o			
			Hard brown becoming grey about elev. 603 CLAYEY SILT		12.0	5	2.	59					o o			Caved
	10		END OF BOREHOLE		601.3 18.5	8	2.	64					o			-
-																BOREHOLE DRY DURING DRILLING
	20															WL IN STANDPIPE AT ELEV. 609.3 - APR. 6, 1990
	05									-						
	24				de mariño a de la casa de mar que segui en este desenvel					Walderson (W) and a						
merecele and the state	****															
	30						9944									
لمعديدة ويستعلمه					verse da se de la competencia de la com	-							1990-004 L			
	35															
							-		0 	STRAIN	AT FAILURE			- UNIWE WILLIAM / D-LL		
	DEP	TH SC	ALE					kama			l				LOGGED	F.F.
	1 Inc	h to	5 feet						Golder As	soci	ates				CHECKE	D F.t.

	L.	OCA AMPL	ION - SEE FIGURE 1 ER HAMMER, 14015; DRCP, 3010			RE	CC)R B	D OF BOREHOLE ORING DATE APR. 2, 1990 PENETRATION TE	8 SHEET 1 DATUM GEODETIC EST HAMMER, 1401b; DROP, 30in	D
	ш	D E	\$OIL PROFILE	<u> </u>		SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/FT	HYDRAULIC CONDUCTIVITY, T , g	<u> </u>
	DEPTH SC/	BORING ME	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	TYPE	BLOWS/FT.	SHEAR STRENGTH Cu, LB/SO.FT. rem.V ⊕ U	WATER CONTENT, PERCENT Water Content, PERCENT Wp W W 10 20 30 40	4
801-3088			•								
COLECT	. 0		GROUND SURFACE		596.1						
Ħ	-		Brown silty TOPSOIL	<u>κ</u> 3	0.0						
		~	Loose brown SANDY SILT trace clay		591.8	1	2• DO	6		O Backfill	1 1 1
╞	5	AUGEF	Soft grey CLAYEY SILT shell & wood fragments, trace organics	41	4.5 590.3	2	2.				_
ļ		POWER	Loose to compact grey		5.8	_	bO	7			
ł			SANDY SILT			з	2* DO	11		O Caved	
$\left \right $	10		Compact grey SILTY SAND		586.6 9.5						
ŀ			occ. to some gravel		584.1	4	ĎO	14		O MH	
			Compact to dense grev	P.	12.0	5	2"	26			
	15		CLAYEY SILT trace sand occ. gravel (TILL)								-
			•••••	Þ	579.6	6	2* DO	51		o	
ŀ			END OF BOREHOLE		18.5						
										WL IN BOREH AT ELEV. 59 DURING DRIL	OLE - 5.1 LING-
L	20				-					APR. 2, 199 WL IN STAND	0 PIPE
										AT ELEV. 59 APR. 6, 199	5.8 - 0 -
											1
	25										
											-
								-			
	30										
the second second											
-	****										_
											- F
	35										
								1	0 6 0 6 FERCENT AXIAL STRAIN AT FAILURS	ε	
	DEP	TH S	DALE					L		LOGGED F.F.	
	1 ind	ch to	5 feet		The Company of the Owner of the	and the second	الد جاعطيا	10-10201	Golder Associates	CHECKED TT.	

.....

	LS	OCA AMPI	TIC	N: SEE' FIGURE 1 3. HAMMER, 14015; DROP, 30in		F	E	CC)R B	D OF	BORI APR. 2 PENE	EHO 1990 TRATIO	LE N TEST	9 Hammer,	SH DA I40lb; DRC	eet 1 Tum (P, 30in	EODETI	c	
	щ	Ę		SOIL PROFILE			\$ A	MPLI	ES	DYNAMIC PI		ION N	7	HYDRAULI		τινιτγ,	T		
	DEPTH SCAL	BORING METH		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	TYPE	BLOWS/FT.	SHEAR STRE	NGTH T. T	, at.V.~ - em.V.~ 6	- 0 • • U 0	WATER WATER	CONTENT, 20			ADDITIONAL LAB, TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
1 901-3098	- -																		-
to JEC	- 0			GROUND SURFACE		596.5													_
đ				Brown silty TOPSOIL	e h	0.0													Backfill
		ER	(Very loose brown SANDY SILT trace clay		0.9 592.0	1	2. DO	2						o				
		OWER AUG	UNCASED			4.5	2	2" DO	2				·			0			Caved -
				Very soft to firm mottled brown becoming grey about elev. 590 CLAYEY SILT			3	2. DO	5							o			-
	- 10 occ. shell, wood fragments and organic material 0																		
						582.0	5	2" DO	3						o				-
	- 15			Compact grey SANDY SILT occ. sand layer		14.5 580.0	в	2* DO	11						0				-
						.0.0				7									WL IN BOREHOLE - AT ELEV. 594.5 DURING DRILLING
-	- 20															:			APR. 2, 1990
- <u>.</u>																			AT ELEV. 595.7 - APR. 8, 1990
	25																		
	Antibulio d'Artic												son or other a second with the second date						
	30					er werven werden er de													
	50																		
	1																		
	35																		-
					-					0 6-6-6 PERCENT	AXTAL STR	AIN AT F	ALURE						
	DEF	TH	sc,	ALE					1	10							L	OGGED	F.F.
ĺ	1 in	ch t	0	·5 feet		or a factor of the state of the	and the second	New York Post Service Street Service Street Service Street Service Street Service Street Service Street Service		Golder	Asso	ciat	es				CI	HECKE	D T=t

	LOI	CATI	ON SEE FIGURE 1 R HAMMER, 140b: DROP, 30h		R	EC	;01	RD	OF BOREHOLE DRING DATE MAY ST, 1980 PENETRATION TO	10 SHEET-1 DATUM GEODETIC EST HAMMER: 140/b; DROP; 30/n
DEPTH SCALE FEET		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	MPL Bd X1	BLOWS/FT.	SHEAR STRENGTH CU, LB/SQ.FT. Nat.V + Q rem.V @ U	WATER CONTENT, PERCENT - O 10 20 30 40
		(HOLLOW STEM)	GROUND SURFACE Brown sility TOPSOIL Very loose brown SiLT trace sand trace clay occ. pockets of organic material Loose to compact brown SiLTY fine SAND occ. sand and gravel layer Compact to very dense grey SANDY SILT trace clay END OF BOREHOLE		595.3 0.0 0.5 589.3 6.0 584.6 10.7 579.3 18.0	1 2 3 4 5 6	2DO 2DO 2DO 2DO 2DO 2DO 2DO	3 4 18 24 85 77		10 20 30 40 Image: Constraint of the second of the
- DEF 1 ir	PTH	l sc/ to	ALE 5 feat					16	Golder Associates	LOGGED F.F.

		OCATIC AMPLE	DN - SEE FIGURE 1 R. HAMMER, 1401b; DROP: 30in		RI	EC	OR	D BC	OF BOREHOLE DRING DATE: MAY 31, 1990 PENETRATION T	TEST	11 SHEET 1 DATUM GEODETIC HAMMER, 1401b; DROP, 30in
	SCALE	AETHOD	SOIL PROFILE	5		SA:	MPLE	s 	RESISTANCE, BLOWS/FT	、	
	DEPTH (BORING A	DESCRIPTION	STRATA PI	ELEV. DEPTH (FT)	NUMBER	TYPE	BLOWS/F1	SHEAR STRENGTH Cu, LB/SO.FT. rem.V 🖨 U.) ● J O	WATER CONTENT, PERCENT Wp W W 10 20 30 40
r 901-3098											
PROJEC.	0		GROUND SURFACE Black silty TOPSOIL	54	598.4 0.0						Pentenite -
	-	OWER AUGER	Loose brown SILTY SAND occ. gravel		0.7 595.4		2	8			O Dell'Onite Seal Seal Granular Filter
	- 5	ч Н	rirm mottled brown CLAYEY SILT	1	593.9 4.5	,	υO				
	-		Danse grey SANDY SILT trace clay occ. gravel occ. silt layer (TILL)	0.		2	2" DO	39			O Caved
	- - _ 10		END OF BOREHOLE		589.4 9.0	3	2* DO	31			WL ENCOUNTERED AT ELEV. 598.4
	-										DURING DRILLING MAY 31, 1990
	_ 15 _							-			AT ELEV. 595.6
	- 20										
	-										
ารระบารที่กรุษสุดสระนะชี่สุดระบาลละ	- 25										
admon recently any and any and any any				mah vinati manganganganganganganganganganganganganga							
ududate of a subcurrent subcurr	- 30										
<u>مراجع میں احمد میں احمد میں احمد احمد احمد احمد احمد احمد احمد احمد</u>											
	- 35								Q		
-	DE l	PTH SC	ALE	J			l	[1	10-0-0 PERCENT AXIAL STRAIN AT FAILE	LURE	LOGGED F.F.
	1 ir	nch to	5 feet						Golder Associates	S	CHECKED +

	L.	OCAT AMPL	ION - SEE FIGURE 1 ER HAMMER, 1401b; DROP, 301n		R	EC	:Oł	RD B	OF BOI	REHOI Y 31, 1990 PENETRATI	E ON TEST	12 HAMMER: 1406: Df	SHEET 1 DATUM GEODE ROP, Boin	ΠC	
	DEPTH SCALE FEET	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	MPLI I Abe	BLOWS/FT.	DYNAMIC PENET RESISTANCE, BL SHEAR STRENGT Cu, LB/SQ.FT.	RATION OWS/FT H nat.V rem.V	+ 0 • • U 0	HYDRAULIC CONDU k. CM/SEI WATER CONTEN WP W 10 20	CTIVITY, IT, PERCENT 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
PROJECT 401-2008	- 0 - 5 - 10 - 20 - 25 - 30 - 30 - 36	POWER AUGER	GROUND SURFACE Black silty TOPSOIL Brown SANDY SILT occ. gravel Very stiff to hard brown CLAYEY SILT trace sand occ. gravel (TILL) occ. silt layer END OF BOREHOLE		597.9 0.0 0.8 593.4 4.5 588.9 9.0		2.00 2.00 2.00	5 29 38		STRAIN AT 1	AILURE			MH	Backfill Caved WL ENCOUNTERED AT ELEV. S95.4 DURING DRILLING MAY 31, 1990 STANDP1PE BLOCKED AT ELEV. 595.2 JUNE 7, 1990

RECORD OF BOREHOLE 1

LOCATION SEE PLAN FIGURE 1 SAMPLER HAMMER, 1401b; DROP; 3010

BORING DATE MAR 28,1989 DATUM GEC PENETRATION TEST HAMMER, 140b; DROP, 30in

SHEET 1 DATUM GEODETIC

_ FNGR	9651,998	ikinese I	anan milanci dependensi menun den milan kanye panya bahar		SHARENA T			an ing panangan kana ang panangan kana ang panangan kana ang panangan kana sa pang panangan kana sa pang pang p				
Ľω		₽	SOIL PROFILE		SA	MPLI	ES	BESISTANCE, BLOWSZET	HYDRAULIC CONDUCTIN	⁽¹ 1Y, T	19	
DEPTH SCAL	FEET	BORING METH	DESCRIPTION	LOTA ELEV. DEPTH (FT)	NUMBER	TYPE	BLOWS/FT.	SHEAR STRENGTH nat.V + Q • Cu, LB/SQ.FT. rem.V • U C	WATER CONTENT, F		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
ŀ			GROUND SURFACE	597.5								-
			Brown silty TOPSOIL.	√ ⁴ 598:8								Backfill
	5		Loose to very loose mottled brown SILTY SAND trace organic material occ. sandy silt layer.	591.8	1	2* DO	8		0			
	10		Soft mottled brown SILTY CLAY trace organic material, occ. shell fragments.	588.0	3	2* DO	4		0	0		
					4	2* DO	з		0			
	15	IER AUGER	Soft to very soft grey CLAYEY SILT trace organic material occ. shell fragments and sandy silt layers.		5	2* DO	4			0		
		7.6in. DIAM. [H		579.5	6	2* DO	2		0	-		
- 2	0		Very loose grey SANDY SILT occ. vegetation layers.	; , 18.0 	7	2,00	3		0			
2	5	-	Very stiff grey SILTY CLAY	573.5 24.0	8		16		o			STANDP I PE
- 31				666.0	9 D	• 1	81		0			
. 35		1994										WL ENCOUNTERED AT ELEV. 679.5' DURING DRILLING J WAR.28,1989 WL IN STANDPIPE AT ELEV. 592.5'
						· · · · · · · · · · · · · · · · · · ·	15-					WAR. 31, 1989 - - -
<u></u> חית								10 ALL AND ANTAL FIREID AL PATLORE L		· -		P 17 4
1	inch	i aŭ. i fe	t jeei				Ċ	Golder Associates		LL CF	IGGED IEOKE	р.н.s. D A
										0.		

-	12/2				 								1-01 Z I.		the set of the set					I.d.	171121	 		
		_	 		 						 	11 · · · · · · · · · · · · · · · · · ·						 	 				1.1	
					 _						 		_	- - -				 						
					 						 					_		 	_			The second		
- A.					 				AL		 											 	_	
			_		 			The state of the s		.	 						_	 			- CON			
											 _					_								
					 			.			 		_											a 1 * 1
- C - E				•	 	_								_				 						
			 _		 _	_					 					_		 	 	_		 		- 124
			 		 _	1 T	_		1000				_					 				 		- C - C -

SHEET 1 DATUM GEODETIC

S.	OCAT AMPLI	ON SEE PLAN FIGURE 1 R HAMMER, 14015; DRCP, 30in					BC	DOF BOREHOLE DRING DATE MAR 28,1989 PENETRATION TES	Z SHEET 1 DATUM - G ST HAMMER, 140b; DROP, 30in.	EODETIC	
DEPTH SCALE FEET	ORING METHOD	SOIL PROFILE	RATA PLOT	ELEV. DEPTH (FT)	NUMBER	14PE	ILOWS/FT.	DYNAMIC PENETRATION RESISTANCE, BLOWS/FT SHEAR STRENGTH Cu, LB/SO.FT. nat.V.~ + O rem.V.~ & U	HYDRAULIC CONDUCTIVITY, K, CM/SEC WATER CONTENT, PERCEI WP W MI		PIEZOMETER OR STANOPIPE INSTALLATION
 ;;	- -	GROUND SURFACE Brown silty TOPSOL	Es X	599.0 598:8)					2	Backfill
5				1.0	1	2 DO 2 DO	8 3		ф 		- <u>-</u>
- - 10		Very soft to firm brown becoming grey at about elev. 590.7' CLAYEY SILT trace organic material, occ. sandy silt layers, occ.			3	2* DO	2			0	-
	ER STEMI	vegetation layers and fragments.			4	2* DO 2* DO	WH WH		0		
- 15	7.5In. DIAM. (HOLLOW				8	2. DO	₩Н		o		
- 20		Very loose grey fine to medium SAND.		580.0 19.0	7	2.	₩R				
- 25		Very stiff to hard grey CLAYEY SILT occ. gravel (TILL).	1.0.0.1	<u>574.6</u> 24.5	8 0	200	29		0		STANDPIPE
_ 30		END OF BOREHOLE		567.5 31.5	9 D	• •	99		0		
35			ar na 1919 and a day and a day and a day and an								WL ENCOUNTERED _ AT ELEV. 591.0' DURING DRILLING MAR.29,1989 WL IN STANDPIPE AT ELEV. 596.5' - MAR. 31,1989
DEP 1 ind	TH SC	ALE 5 feet						Golder	Associates	LOGGEE) P.H.S. ED K

RECORD OF BOREHOLE 3

LOCATION SEE PLAN FIGURE 1 SAMPLER HAMMER, 140b; DROP; 3Din-

BORING DATE MAR.28,1989

DATUM GEODETIC PENETRATION TEST HAMMER, 14015; DROP, 30In

SHEET 1

	E	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRATION	HYDRAULIC CONDUCTIVITY.	. g
DEPTH SCAL FEET	RORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	түре	BLOWS/FT.	SHEAR STRENGTH Cu, LB/SQ.FT. rem.V ⊕ U C	WATER CONTENT, PERCENT WP W W 10 20 30 40	VI PIEZOMETER OR STANDPIPE INSTALLATION
F		GROUND SURFACE	1	801.9						
ļ		Brown silty IOPSOIL Loose brown SANDY SiLT trace	 	601.1 0.8	- 1	2	6			Bac <u>kt UI</u>
- 5		clay trace organic material.		594.9	2	2° 20	8		0	-
. 10		Very loose brown SiLTY FINE SAND.		7.0 592.4 9.5	3	2* DO	1		0	
					4	2• DO	1		. 0	-
- 15		Very soft grey CLAYEY SILT some organic material numerous silt and sand layers, occ. shell fragments and peat			5	2* DO 2*	2		0 0	MH .
- 20	POWER AUGER	Very loose grey SILTY FINE SAND trace organic material.		583.9 18.0	7	2*	3		0	
- 25		Soft grey CLAYEY SILT trace		578.9 23.0	8	2.	3		0	
30		organic material occ. sandy silt and silty sand layers.	· · · · · · · · · · · · · · · · · · ·	570.9 31.0	8 D	•	0		0 0	
35		Compact grey SAND AND GRAVEL.	Q. 0.	568,9 33.0	2	E	-			STANDP PE
		(TILL). END OF BOREHOLE		565.4 36.5		⊃ ³	33		C	WL IN STANDPIPF
40					ĺ	· · · · · · · · · · · · · · · · · · ·	-	0		AT ELEV. 601.2'- MAR. 31.1989.
	тн (C bl F	_i			- <u>-</u>	15	-0-6 PERCENT AXIAL STRAIN AT FAILURE 10	i	DGGED P.H.S.
i in	ch i	o 5 feel						Golder Associates	C	HECKED PS.

LOCA SAMP	ATION SEE PLAN FIGURE 1 PLER HAMMER, 1400; DROP, 30m SOIL PROFILE			SA	MPLI	B B ES	DENTE MAR 29,1989 PENETRATION TES DYNAMIC PENETRATION RESISTANCE, BLOWS/FT	DATUM DATUM IT HAMMER; 1401b; DROP, 307 HYDRAULIC CONDUCTIVITY, k, CM/SEC	SEODETIC T	
PEPTH SCA FEET RORING MET		STRATA PLO	ELEV. DEPTH (FT)	NUMBER	түре	BLOWS/FT.	SHEAR STRENGTH Cu. LB/SQ.FT. nat.V + Q rem.V ⊕ U	WATER CONTENT, PERC Wp W W 10 20 30		OR STANDPIPE INSTALLATION
6	GROUND SURFACE Brown silty TOPSOIL Very soft to firm brown CLAYEY SILT numerous silty sand and sandy silt layers occ. shell fragments. Very loose grey SILTY FINE SAND.		802.6 801.6 0.7 595.6 7.0 593.0 9.5		2* DO 2* DO 2* DO	6 2 3			40	Backfill
15 STATES	Solt to very solt grey CLAYEY SILT numerous layers sandy silt and silty sand occ. wood and shell fragmen occ. peat layers.	of ts,	578.5	5 6 7	2.00	2 ² ² 4				
30	Loose grey SILTY SAND occ. gravel. Very stiff grey SILTY CLAY occ. gravel (TILL). END OF BOREHOLE	0.010101	24.0 575.6 27.0 571.0 31.5	8 22 2 2 9 D				c		WL ENCOUNTERED AT ELEV. 594.5 DURING DRILLIN WAR.29,1989 WL IN STANDPIPI AT ELEV. 602.2 MAR. 29,1989.
EPTH S	SCALE	<u>, , , , , , , , , , , , , , , , , , , </u>		<u></u>			e-6 FERCENT AXIAL STRAIN AT FAILURE		LOGGED	P.H.S.

scale T	METHOD	SI		PLOT		S.A.	MPL	ES L	DYNAMIC PE RESISTANCE,	BLOWS	/FT	2 ,	HYDRAULIC k, (ГIVIТҮ,	I	TONAL TESTING	PIEZOMETER
DEPTH	BORING	DESCR	IPTION	STRATA	ELEV. DEPTH (FT)	BAMUN	ŢΥΡΕ	BLOWS/I	SHEAR STRE Cu, LB/SQ.F	NGTH 	nat,V + rem.V ⊕	Q • U Q	WATER C	ONTENT, W 20 3	PERCEI	NT 0	ADDIT LAB. 1	STANDPIPE INSTALLATION
. 0		GROUND SURFACE	2501L	-m	800.2 0.0	2	·											Backfill
		Soft mottled b SILT trace org	rown CLAYEY anic material.		0.8 595.1	3	2* DO	3						0				
- 5		Loose to very FINE SAND trac material.	ioose grey SILTY e organic		4.6	2	2* DO 2* DO	7						0				
. 10	7 AUGER	Very soft grey	CLAYEY SILT		590.7 9.5	4	2* DO	2							0			
. 15	POWER	vegetation lay	ərs.		<u>585.7</u> 14.5	5	2" DO	2							0			
		Brown FIBROUS F	2EAT .		583.2 17.0	6	DO	7								239	→	
20		Very soft grey occ. silt parti	SILTY CLAY ngs.		579.2	7	2. DO	6					D		o			
		Compact grey SA	ND AND GRAVEL.	00000000														
25		END OF BOREHOLE		0	573.7 26.5	8	2* DO	18										WL ENCOUNTER AT ELEV. 596 DURING DRILL
30						5 100 FL-1 11 - 11 - 11 - 11 - 11 - 11 - 11 -											na n	MAR.29,1989 WL IN STANDP AT ELEV. 800 MAR.31,1989
35					A state of the st													
												o de la constance de						

PENETRATION TEST 101

LOCATION SEE PLAN FIGURE 1 SAMPLER HAMMER, 14015; DROP, 3010

BORING DATE MAR. 29,1989

DATUM GEODETIC PENETRATION TEST HAMMER, 14015; DROP 3010

SHEET 1

	ining dati T								
5	aoh	SOIL PROFILE		SA	MPLE	5	RESISTANCE, BLOWS/FT	KYDRAULIC CONDUCTIVITY, k, CM/SEC	T
l ScAl	METI		101	ä		<u>.</u> -	20 40 80 80	·	
H	5NF	DESCRIPTION	ELEV.	MBE	ΥPE	WS/F	SHEAR STRENGTH nat.V + Q	WATER CONTENT, PERCENT	
DE	BOR		Y (FT)	R	+	BLO	Ca, EB/301.F1. rem.V ⊕ U	° ï <u> </u>	L ×
-5		· · · · · · · · · · · · · · · · · · ·	0/	-					
Ť.									
1									
-									
- 0			0.0						
-									
-									
- 5									
- 10									
- 15	ĺ								
						ĺ			
20									
					ł				
- 25									
				ĺ					
- 30		END OF PENETRATION TEST	30.0						
							END OF PEN. TEST		
35									
					-	16-	0 - 8 PERCENT AXIAL STRAIN AT FAILURE	ļ	
DEPT	H SCA	LE				i	C	-	LOGGED P.H.S.
t incl	h ic	5 feet				C	Bolder Associates		CHECKED
				tion in the second		_			_*

т					A REAL PROPERTY AND A REAL
Ł	 Proprieta da la segurar de la cara de la Prese e Marcel 	Charlen Balling and a large story for the state of the second second	debe beleven and a second second		
1			이 사람이 가지 않는 것이 같아? 아이들은 것이 같아요. 아이들 것이 아이들 것이 같아요.	a la frita de calebra d	ing a set of the set o
٠	The second se		철도로 잘 하는 것이 같다. 이 같은 것 같은 것 같아요. 김 가지만 것 같아요. 나는 말랐다. 한	the place in the second of the second s	CONTRACTOR AND AND AND ADDRESS AND ADDRESS AND ADDRESS A
ł	3.3 A STOLEN AND A STOLEN AND AND AND A STOLEN AND A STOLEN AND A STOLEN AND A S	and the second		and the second sec	eres shallon a she billion ta principality (1994) in she she and a she have
а.	the second se		※※レーイ・ハレト ※ハレ※エロ	この工設プロビーの認知するとの	CALL AND
	THE REAL PROPERTY AND AND ADDRESS OF ADDRESS	Contract of the late of the second	(MAN LUVNU - UNE MALL		den en la sector de
н					The second s
		and the second secon	And the second	and the second	and the second
а.	The second s	and the second	LONGER A BOUT OF PLATER OF A REAL AND A DEPARTMENT OF A		The second s
L	THE AND THAT AND A THE		and the second state of the se	The second s	
L	一般帝にしている ほしり 第3日日:「おけけり	8 1	DATE	004000	CONTRACT AND ADDRESS OF A DECEMBER OF A D
L	difficult and and the second state of the seco	the second s		30.1989	
4	The second s		Construction of the state of the second sta	and the state of the	CHOCH IC I CALORIC
1	and the second			er frieden in de la ser de la s	[10] We have a standard being and sharped as a standard being standard as a second standard being standard as a second standard being standard as a second standard being standar Being standard being standard bein Being standard being standard bein Being standard being stan
1	the second s	ter i an af af a guilt fair a fair last a fair a guilt a fair fair	and a provide the second se	and the state of the last of the state of th	Wanter a particular basis of the second s
			n waard all all all she sheet all all the set of a state		and the second
8				and the second	
E				Process of the second sec	The second s
E				service when a state is a service of the	
	the second se	the second second and the second s	the second se	of the table to a table the the table to a table to a table to a table to be table to be table to be the table to be table to	the second se

ŀ	en alak			an chuir an sha	en sengerei		i an ai			
	LE VLE	BOH	SOIL PROFILE		·	SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/FT	HYDRAULIC CONDUCTIVITY,
	DEPTH SCA	BORING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (FT)	NUMBER	ТҮРЕ	BLOWS/FT,	SHEAR STRENGTH Cu, LB/SQ.FT. rem.V ⊕ U O	WATER CONTENT, PERCENT WATER CONTENT, PERCENT WD W M 20 40 60 80
T 891-3247	• •									
PROJEU	- 0		GROUND SURFACE Brown silty TOPSOIL	X	597.2 598:2					
	- 5		Brown SAND trace to some silt occ. sandy slit and clayey slit layers		592.2	1	cs		· ·	0 - <u>-</u> - <u>-</u>
	- •		Grey CLAYEY SILT numerous shell fragments occ. peat layers some organic material		5.0	2	cs			O SEEPAGE INTO TEST PIT AT ELEV. 593.2 JUNE 30,1989.
	- 10		Grey SANDY SILT occ. organic material END OF TEST PIT		9.0 585.7 11.5	3	cs			o
	- 15									
,,,,,,,	20									
are the second	25		•					a se		
the second s	30									
	35					The second se				
			CANADALISTIC - A					_ -	0 16-0-6 PERCENT AXIAL STRAIN AT FAILURE	
	DEF	PTH SO	CALE					Ļ		LOGGED P.H.S.
	1 In	nch to	5 feet						Golder Associates	CHECKED / MUL

		CATIC	DN See Figure 1		R	EC	OF	RD	OF DATE	TE June 3	ST 0,1989	PIT	1	02		DA	TUM G	eodetic		
	CALE	ETHOD	SOIL PROFILE	5		SA	MPLI	ES	DYNAJ RESIST	AIC PEN ANCE,	IETRATI BLOWS/	ION N FT	2	HYDR,	AULIC C k, C	ONDUC	τινιτγ,	I	HAL. TING	
	DEPTH S FEET	BORING N	DESCRIPTION	TRATA PL	ELEV. DEPTH (FT)	NUMBER	TYPE	BLOWS/FT	SHEAR Cu, LE	STREN	GTH n f		- Q • • U O	WA:	TER CC		PERCEN	17	ADDITIO	
PROJECT 881-3247	- 0		GROUND SURFACE Brown silty TOPSOIL		598.0 0.0 594.2 1.8													0		
	- 5		Mottled brown CLAYEY SILT trace organic material Brown SANDY SILT Grey SAND & GRAVEL Brown becoming grey at about about 587 5 CLAYEY SILT (TILL)		591.5 4.5 590.0 8.0 588.5 7.5 8.0	1	CS CS CS							-	0 0 0					SEEPAGE INTO TEST PIT AT ELEV. 592.0 JUNE 30,1989.
	- 10		END OF TEST PIT	X	588.5 9.5	4	CS													-
	- 15		• • •							-				-						-
	– 20 - - - 25		-																	
	- 30																			
	- 35																			

DEPTH SCALE

t inch to 5 feet

Golder Associates

LOGGED P.H.S. CHECKED June

			N See Figure 1 SOIL PROFILE	R	EC(ORI	D OF DATE DYNAI	JUNE 3	EST PIT	. 1	03 HYDRAULIC	DA	TUM ¢. Gec	odetic.	
	DEPTH SCALE	BORING METHO	DESCRIPTION	LOTA VIVALS	NUMBER	TYPE BLOWS/FT	RESIST SHEAR Cu, LE	ANCE, STREN S/SO.FT	BLOWS/FT IGTH nat.V rem.V (+ 0 • • U 0	WATER 0 WP	CM/SEC CONTENT, 40 6	PERCENT	ADDITIONAL LAB. TESTING	GROUNDWATER CONDITIONS
PROJECT 891-3247	- 0		GROUND SURFACE Brown silty TOPSOIL Brown SILTY SAND trace to some organic material Brown medium to coarse SAND trace silt occ. gravel	599.1 0.C 597.S 1.2 1.2 2.e		cs					·o				
	- 5		Mottled brown CLAYEY SILT occ. gravel (TILL) becoming grey at about elev. 592.1,occ. silf seams below elev. 591.1 END OF TEST PIT	0 590.1 9.0	2	cs					0	· .			TEST PIT DRY DURING EXCAVATION JUNE 30,1989.
	- 15		· ·												
dennesden and an and an and an and an and	25				и										-
	35						0 18 - 6 P 10	ERCENT A	XIAL STRAIN AT	FAILURE					-
	1 ir	nch to	5 feet				Gol	der	Associat	tes				CHEC	ED (LULL

RECORD OF BOREHOLE 2

or bonenoce e

DATUM LOCAL

LOCATION See Figure 1 BORING DATE MAY 30, 1979

SAMPLER HAMMER WEIGHT 140 LBS DROP 30 IN-

PENETRATION TEST HAMMER WEIGHT - DROP -

	e e		SOIL PROFILE		S۵	MPL	ES			AMIC P	ENETR	ATION `	`;	COEFI	FICIENT	OF PER	MEASIL	ITY, Ţ	6	
	Ť			12	1		F		RES	IS ANC	E,BLOW	57	·	- - 	, איי (איי (MLZ SEC.	In 1v		L N L N	PIEZOMETER
	Σ	/		PLO	ЕR	- w	2/12	ALE		etoen			.					. IO	NON LON	STANDPIPE
	Z Z	DEPTH	DESCRIPTION	RAT.	BML	L P	ŇQ	l ⊃ C N M	Cu.	JINEN	UIN N	АТ. V +-	08 11-0	WAI	WP L	чтемт, н — Х	WL		П Ц	INSTALLATION
	Da l			STE	ž		ã	ш			ĸ	<u>c.</u> (v),∨,°Φ	0,.0	10) 2	20 3	 0 4	0	A0 LAE	
					İ	<u>† </u>								j			······································			
					1															
1																				Í
								10.5								1				
L	1	104.1	GROUND SURFACE																	
		0.0	SILTY CLAY SOME	K	1															
		101.6	(FILL)	Ķ		, "														
		2.2	SAND SOME CLAY OCC		1	0.0	9									6				
1		99.6	SIDM ROOMING AND	Ťτί				100						1				Ì		
		-	SILT TRACE SAND	И	2	н	7													WATER LEVEL IN BOREHOLE AT
		97.1	FRAGMENTS (ALLUVIUN	pЦ																ELEV. IOI-I ON COMPLETION OF
		1.0			3	11	2											67 %		DRILLING MAY 30, 1979
1								95				1					1	1		AT ELEV IODI
					4		1													MAY 31, 1979.
	5			:												0				
	ũ																			
	5	1		: ;]	5			90						ļļ		0		<u> </u>		
°⊂ 	≥		LOOSE GREY				_													
9	-0		SILTY SAND POCKETS OF	·.	6	"	z	l								C				
-	0		SANDY SILT OCC. GRAVEL WOOD						ĺ											
A	Ŧ		FRAGMENTS SHELLS (ALLUVIUM)					85												
	;																			
œ	10	ĺ	1		7	ə	8									0				
۳ ۲				1		Ì										E.		i ·		
0	=		·										1							
e.	÷ 2							80		<u>-</u>				1		<u>.</u>				
					8	n	4		ç					1						
			1			ł						(0		j .		
		75.6		-												1				
		28.5	COMPACT GREY					75		i						}		1		
ĺ		1	SILTY SAND &		_	1.			}				1	1		[
	Ļ	72.8			9 '	' '	4								0					
- [010	STIFE TO HARD								İ	{		-	Ŭ					
			GREY SILTY CLAY	· .]	ĺ					1								1		
			GRAVEL (TILL)						į											
		67.6	1,	;) 1	0 "	З	35				ļ				c					
	1	36-5	END OF BOREHOLE					ļ	ļ		ĺ	ĺ		1						
	1			1			1						ļ							
								65 H	 į	1	1			1						
	-						ĺ													
			4		ļ															
											-		1							
			-		-			Ŀ												
								18	c na≓ ≓Per	cent axi	al strain	et feile	re i	:						
							-	l	10	<u></u>									0848	E. GALLERNO
VΕ	RTH	CAL SC.	ALE REDUCTION N	.1.5	•				Gol	der,	Asso	ciate	35						CHEC	KED DIM
																			-	

RECORD OF BOREHOLE 3

LOCATION See Figure I BORING DATE MAY 30,1979 DATUM LOCAL

SAMPLER HAMMER WEIGHT 140 LBS. DROP 3 0 IN · PENETRATION TEST HAMMER WEIGHT - DROP -

	2		SOIL PROFILE		SA	MPL	ES	<u> </u>	DY	NAMIC	PENET	RATION	<u>}</u>	COEFFI	CIENT	OF PE	MEABI	LITY, Ţ	10	
1111				5		1	E	LON LON	AE	INA I GIG	LE,BLU	W57	·	0 I X I O	ж., (іх	IO I:	;. (10	1×10	TINC	PIEZOMETER
N Sh		ELEV 'N	DESCRIPTION	E E	BER	ы Ц	VS/	VAT CAL	SHEAF	STRE	чатн	NAT V		WATE	R CO	NTENT,	PERCEN		TIOF	STANOPIPE
		DEPTH		TRA	NUN	ζ	BLD	ELE S	Cu.			REM.V (Ð U Ö	10	¥r 1	č		4.0	ADDI AB.	INSIALLATION
<u> </u>				0				<u> </u>		<u>}</u>	1		1					40	<u>[]</u>	
												.								
			-				-	105-		·		·			•			<u> </u>		
		100-2	GROUND SURFACE																	
		0.0	COMPACT BROWN					100		<u> </u>	<u> </u>						1		-	1916 - L. L. M. C. L.
		97.7	SANDY SILT (ALLIVUN	1)'		2"														<u>_</u>
		2.5	SOFT BROWN	11		D-0-	4									0		ŀ		
	ļ	4.5	LOOSE BROWN			 		95.												
		93.2	(ALLUVIUM)	[]	2		8											•		
	Ī	7.0			3		2											_		WATER LEVEL
			SILTY SAND OCC	 	Ť															AT ELEV 964
			ROOTS (ALLUVIUM)		4	n	з	90.			1						0		-	OF DRILLING
		88-2]				AND AT
	Σ				5	#	3									0	1			MAY 31, 1979.
е ш	ш			·	\neg	ĺ	_	85.								 				
9]			VERY LOOSE TO		6	"										0	-			
×	×		SANDY SILT																	
			SAND OCC ROOTS SHELLS & WOOD			ļ						ĺ								
	Ŧ		FRAGMENTS (ALLUVIUM)		7	•	з	80 -								- o	! 			
~ .	A	1														0	1			
ш	5																			
≶ 0 -			-	ŀĻ				75.	1											-
а. I t	2	26.0				"	1			2						0				
			SOFT TOVERY	Í		ļ														
			CLAYEY SILT TRACE SAND																	1
	-	(.	ALLUVIUM)	9	, ,	. 4	+3	70 -							0		<u> </u>			
	-	68-2				Í														
			HARD GREY									,								
			TRACE SAND OCC	1_		ļ		65									[
		65.7) IC	2 "	5 v	4						ſ		Ċ	>				
		36·5 E	END OF BOREHOLE			ļ		-	Ì) }			
																				4
								60 ·				<u> </u>						<u>i</u> ī	-	
								l												
	ĺ						ļ	[1					
)	ļ	}]				÷ ÷	cent axi	al stre	n at foile	ire							
VEF		AL SCA	ALE REDUCTION N	.T.S				L											DRAW	5. GALLERNG N
				2					Gol	der.	Ass	ociat	2 S						CHECI	KED . P.G.

Exp Borehole and Test Pit Logs

November 2008 Borehole Summary Table

Boreholes were advanced using a locally contracted track-mounted Canterra drilling unit on November 8, 2008.

Depth (m)	Moisture Content (%)	Penetromete r (kg/cm ²)	Soil Description
BH 08-1 0.0 - 0.2 0.2 - 3.1 0.8 2.3 3.1 - 6.1 3.7 6.1	14.1 18.7 24.3 30.7	1.5	TOPSOIL – black, silty loam, loose, moist CLAYEY SILT – brown, trace fine sand and gravel, stiff, moist SANDY SILT – grey/brown, fine grained, trace clay, loose to compact, very moist to wet -becoming loose and wet below 3.65m depth BOREHOLE TERMINATED at 6.1m depth Groundwater measured at 1.4 m depth upon completion
BH 08-2 0.0 - 0.2 0.2 - 2.3 0.8 2.3 2.3 - 6.1 3.7 6.1	14.8 23.1 26.2 26.7	1.1	TOPSOIL – black, silty loam, loose, moist CLAYEY SILT – brown, trace fine sand and gravel, firm to stiff, moist SANDY SILT – grey/brown, fine grained, trace clay, loose, very moist -becoming wet below 3.1m depth BOREHOLE TERMINATED at 6.1m depth <i>Groundwater measured at 3.1 m depth upon completion</i>
BH 08-3 0.0 - 0.2 0.3 - 4.5 0.8 2.3 3.7 4.5- 6.1 6.1	24.2 25.8 29.3 28.7		TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, fine grained, loose to compact, very moist to wet -becoming grey with trace clay and wet below 2.7m depth -becoming CLAYEY SILT, soft below 4.5m depth BOREHOLE TERMINATED at 6.1m depth <i>Groundwater measured at 3.1 m depth upon completion</i>

Depth (m)	Moisture Content (%)	Penetromete r (kg/cm ²)	Soil Description
<u>BH 08-4</u>			
$\begin{array}{c} 0.0-0.3\\ 0.3-3.7\\ 0.8\\ 2.3\\ 3.7-6.1\\ 3.8\\ 6.1 \end{array}$	22.9 24.9 31.4 22.0	0.5	TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, fine grained, loose to compact, very moist to wet -trace clay below 2.7m depth -becoming CLAYEY SILT, grey, soft below 3.7m depth
			BOREHOLE TERMINATED at 6.1m depth Groundwater measured at 3.1 m depth upon completion
<u>BH 08-5</u>			
$0.0 - 0.3 \\ 0.3 - 5.2 \\ 0.8 \\ 2.3 \\ 3.8 \\ 5.2 - 6.1 \\ 6.1$	19.3 24.6 25.6	1.5	TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, fine grained, trace clay, loose to compact, very moist to wet -some clay, loose, wet -becoming grey -becoming CLAYEY SILT, soft, wet below 5.2m depth
0.1	40.4		BOREHOLE TERMINATED at 6.1 m depth Groundwater measured at 3.1 m depth upon completion
<u>BH 08-6</u>			
0.0 - 0.4 0.4 - 2.3 0.8 2.3 2.3 - 3.4	11.1 13.7		TOPSOIL – black, silty loam, loose, moist SAND – brown, fine to medium grained, compact, moist -some silt to silty
3.4 - 4.6	16.0	3.5	SILT TILL – brown, trace sand and gravel, dense, moist
4.6 – 6.1	44.0	2.0	-becoming grey and clayey
0.1	14.6		BOREHOLE TERMINATED at 6.1 m depth Open and dry upon completion
<u>BH 08-7</u>			
0.0 - 0.4 0.4 - 0.8 0.8	22.0	1.0	TOPSOIL – black, silty loam, loose, moist CLAYEY SILT – brown, trace sand and gravel, stiff, moist
0.8 – 1.8 1.8 – 4.6 2.3	16.4	4.0 3.5	SILT TILL – brown, trace sand and gravel, dense, moist -some silt layering
3.8 4.6 – 6.1 6 1	15.7 14 8	2.5	-becoming grey and clayey
0.1	14.0		BOREHOLE TERMINATED at 6.1 m depth Open and dry upon completion

Depth (m)	Moisture Content (%)	Penetromete r (kg/cm²)	Soil Description
<u>BH 08-8</u>			
0.0 - 0.4 0.4 - 1.5	475	1.0	TOPSOIL – black, silty loam, loose, moist CLAYEY SILT – brown, trace gravel, trace topsoil, firm/stiff,
0.8	17.5	0.5	MOIST
1.5 - 3.6	28.9	0.5	-becoming grey, nim and very moist
3.8 – 4.6	20.0		-soft, very moist to wet
3.8	27.4		
4.6 – 6.1	07.5		-wet
6.1	27.5		BOREHOLE TERMINATED at 6.1 m depth Groundwater measured at 3.1 m depth upon completion
<u>BH 08-9</u>			
0.0 - 0.4 0.4 - 1.5 0.8 1.5 - 3.8 2.3	30.6 34.8		TOPSOIL – black, silty loam, loose, moist CLAYEY SILT – brown, some fine sand, soft, moist to very moist -becoming grey
3.8 – 4.6 3.8 4.6 – 6.1	29.0		-wet
6.1	28.9		BOREHOLE TERMINATED at 6.1 m depth Groundwater measured at 4.6 m depth upon completion
<u>BH 08-10</u>			
0.0 - 0.4 0.4 - 1.5 0.8	22.0		TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, trace to some clay, loose, very moist
1.5 – 3.8			-becoming grey and clayey
2.3	29.3		
3.8 – 4.6	27.0		-wet
ى. 46–61	21.9		-trace till lavering
6.1	30.6		
			BOREHOLE TERMINATED at 6.1 m depth Groundwater measured at 3.4 m depth upon completion

Depth (m)	Moisture Content (%)	Penetromete r (kg/cm²)	Soil Description
<u>BH 08-11</u>			
0.0 – 0.4 0.4 – 1.5	23.0		TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, trace to some clay, loose, very moist
15-38	23.0		-becoming grey
2.3	26.7		becoming grey
3.8 – 4.6			-clavev
3.8	33.4		, ,
4.6 – 6.1			-wet
6.1	29.8		
			BOREHOLE TERMINATED at 6.1 m depth
DU 00 40			Groundwater measured at 5.4 m depth upon completion
<u>BH 08-12</u>			
0.0 - 0.4 0.4 - 1.5		0.5	TOPSOIL – black, silty loam, loose, moist
0.4 1.0	33.5	0.0	moist
1.5 – 3.8	00.0		-becoming soft and very moist to wet
2.3	30.6		
3.8 – 4.6			-grey
3.8	29.6		
4.6 – 6.1			
6.1	28.3		
			BOREHOLE TERMINATED at 6.1 m depth
			Groundwater measured at 5.7 In depth upon completion
<u> DE VO-13</u>			
0.0 - 0.4			TOPSOIL – black, silty loam, loose, moist
0.4 – 1.5			SANDY SILT – brown, trace to some clay, loose, very moist to
0.8	22.2		wet; becoming grey and clayey below 0.8 m bgs
1.5 – 3.8			
2.3	29.3		
3.8 – 4.6			-wet
3.8	48.3		
4.6 – 6.1	o 		
6.1	27.7		BOREHOLE IERMINATED at 6.1 m depth Groundwater measured at 5.7 m depth upon completion

Depth (m)	Moisture Content (%)	Penetromete r (kg/cm²)	Soil Description
<u>BH 08-14</u>			
$\begin{array}{c} 0.0-0.3\\ 0.3-1.5\\ 0.8\\ 1.5-3.8\\ 2.3\\ 3.8-4.6\\ 3.8\\ 4.6-6.1\\ 6.1\end{array}$	28.5 29.3 20.4	2.5 2.5	TOPSOIL – black, silty loam, loose, moist CLAYEY SILT – brown, some fine sand, soft, very moist -becoming grey with increasing clay content CLAYEY SILT TILL– brown, trace sand and gravel, very stiff, moist BOREHOLE TERMINATED at 6.1 m depth <i>Groundwater measured at 1.5 m depth upon completion</i>
<u>BH 08-15</u>			
$0.0 - 0.5 \\ 0.5 - 2.1 \\ 0.8 \\ 2.1 - 3.1 \\ 2.3 \\ 3.1$	28.4 18.0	0.5 3.0	TOPSOIL – black, silty loam, loose, moist CLAYEY SILT – brown, some fine sand, soft, very moist CLAYEY SILT TILL– brown, trace sand and gravel, very stiff, moist BOREHOLE TERMINATED at 3.1 m depth
BH 08-16			Open and dry upon completion
$\begin{array}{r} 0.0 - 0.3 \\ 0.3 - 1.8 \\ 0.8 \\ 1.8 - 3.1 \\ 1.8 \\ 3.1 \end{array}$	15.1 17.7	3.0	TOPSOIL – black, silty loam, loose, moist SAND AND GRAVEL – brown, coarse grained, loose to compact, wet SILT TILL– brown, trace sand and gravel, trace clay, very stiff, moist
			Groundwater measured at 0.6 m depth upon completion
$\begin{array}{r} \hline \textbf{BH 08-17}\\ 0.0-0.3\\ 0.3-1.5\\ 0.8\\ 1.5-3.8\\ 2.3\\ 3.8-4.9\\ 3.8\\ 4.9-6.1\\ 6.1\\ \end{array}$	22.8 18.6 18.3 17.4	1.0 1.0 1.5	TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, trace clay, loose to compact, very moist SILT TILL– grey, trace clay, trace sand and gravel, dense, moist
			Open and dry upon completion

Depth (m)	Moisture Content (%)	Penetromete r (kg/cm ²)	Soil Description
<u>BH 08-18</u>			
0.0 – 0.3 0.3 – 1.5 1.5	20.2	4.5	TOPSOIL – black, silty loam, loose, moist SILT TILL– grey, trace clay, trace sand and gravel, dense, moist
			BOREHOLE TERMINATED at 1.5 m depth Open and dry upon completion
<u>BH 08-19</u>			
0.0 - 0.3 0.3 - 1.5 0.8 1.5	16.2	3.0	TOPSOIL – black, silty loam, loose, moist CLAYEY SILT TILL– grey, trace sand and gravel, dense, moist BOREHOLE TERMINATED at 1.5 m depth Open and dry upon completion
BH 08-20			
$0.0 - 0.3 \\ 0.3 - 2.1 \\ 0.8 \\ 2.1 - 3.1 \\ 2.3 \\ 6.1$	22.7 14.1	3.0	TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, fine grained, loose to compact, wet SILT TILL– grey, trace/some clay, trace sand and gravel, dense, moist BOREHOLE TERMINATED at 6.1 m depth
BU 09-21			Open and dry upon completion
$\begin{array}{c} 0.0 - 0.3 \\ 0.3 - 2.1 \\ .8 \\ 2.1 - 3.1 \\ 3.1 \end{array}$	22.7 14.1	3.5	TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, fine grained, loose to compact, wet SILT TILL– grey, trace/some clay, trace sand and gravel, dense, moist BOREHOLE TERMINATED at 3.1 m depth Open and dry upon completion
BH 08-22			
$0.0 - 0.3 \\ 0.3 - 1.5 \\ 0.8 \\ 1.5 - 4.0 \\ 2.3 \\ 4.0 - 4.6 \\ 0.3 \\ 0.4 $	22.2 25.3	2.0	TOPSOIL – black, silty loam, loose, moist SANDY SILT – brown, fine grained, dilatant, loose/compact, very moist CLAYEY SILT TILL– grey, trace sand and gravel, very stiff,
4.6	22.2		BOREHOLE TERMINATED at 4.6 m depth Open and dry upon completion

BH09-1 Sheet 1 of 1

London Branch

PF	PROJECT <u>Proposed Residential Developement, George Street, Port Stanley, Ontario</u> PROJECT NO. <u>LNGE00009968A</u>									
DF		PE/METHOD		DAT	ES:	Borin	g De	ec 22/09	D/)	Water Level Dec 22/09
DWPTH (m)	ELEVAT-ON (m)	STRATA DESCRIPTION	STRATA PLOF	WELL LOG	ТҮРШ	SAI N U M B E R	MPLES RECOVERY (mmor)	N VALUE (blows) or RQD (%)	OF HUR HUST-S	SHEAR STRENGTH ◆ S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane 4080 kPa Atterberg Limits and Moisture W _P W W _L ● SPT N Value × Dynamic Cone
-0 - - - 	0.25	TOPSOIL, brown/black sandy loam, trace cobbles. loose, moist SANDY SILT, brown, trace fine gravel, loose, wet				S1	300	3		$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $
- 2 -				V		S2	300	2		
- - 3		-becoming grey below 2.3 m depth		12		S3	350	1		
- 4 - 5 -		3.0 m depth				S4 S5	350	1		
- 6 - -	6.56	End of Borobolo at 6 56 m donth				S6	300	7		
-7										
NOT 1) Bo LN log 2) Bo me 3) No col	OTES Borehole interpretation requires assistance by Trow before use by others. Borehole Logs must be read in conjunction with Trow Report LNGE00009968A. For definition of terms used on logs, see sheets prior to logs. Borehole open to 3.0 m depth upon completion of drilling; groundwater measured at 2.3 m depth upon completion of drilling. No significant levels of methane were detected during drilling and upon completion of borehole.						PLE LE S Auge ock Co R TES ecific (dromet ve Ana it Weig Id Perro Perm R LEV	GEND or Sampl ore (eg. E GTS Gravity ter alysis ht meability eability /ELS	e Z 3Q, NC C C CD CU UU UC DS	SS Split Spoon ST Shelby Tube t, etc.) ST Shelby Tube VN Vane Sample Consolidated Drained Triaxial Unconsolidated Undrained Triaxial Unconfined Compression Direct Shear

BH09-2

London Branch

Sheet 1 of 1

PROJECT_Proposed Residential Development, George Street, Port Stanley, Ontario PROJECT NO. _LNGE00009968A CLIENT 387476 Ontario Ltd. DATUM N/A DRILL TYPE/METHOD <a>Track-mounted CME-55 DATES: Boring Dec 22/09 Water Level Dec 22/09 SHEAR STRENGTH SAMPLES ST OTHER L E V S Field Vane Test (#=Sensitivity) WELL R A T A **KECOVERV** DEPTH ▲ Penetrometer ■ Torvane Ν Å NUMBUR VALUE STRATA 40 80 kPa TYPE (blows) TESTS DESCRIPTION L ÖG Atterberg Limits and Moisture Ó P or W_P W W_L ថ្ន ROD (m) (mm) (%) • SPT N Value × Dynamic Cone (m) or (%) 20 30 1,0 40 -0 TOPSOIL, brown/black sandy loam, trace 14:5 0.30 cobbles, loose, moist SANDY SILT, brown, trace gravel, loose, moist **S**1 200 3 -1 becoming grey, dilatant and very moist below 1.5 m depth **S2** 250 2 -2 Ţ **S**3 300 1 3.00 -3 CLAYEY SILT, grey, trace sand and gravel, very soft, wet **S**4 300 1 -1 400 **S**5 -5 -6 300 **S6** 6.56 End of Borehole at 6.56 m depth -7 SAMPLE LEGEND AS Auger Sample S SS Split Spoon ST Shelby Tube NOTES Rock Core (eg. BQ, NQ, etc.) II VN Vane Sample Borehole interpretation requires assistance by Trow before use by others. Borehole Logs must be read in conjunction with Trow Report LNGE00009968A. For definition of terms used on logs, see sheets prior to 1) OTHER TESTS G Specific Gravity C Consolidation logs. H Hydrometer CD Consolidated Drained Triaxial S Sieve Analysis CU Consolidated Undrained Triaxial γ Unit Weight P Field Permeability 2) Borehole open to 2.7 m depth upon completion of drilling; groundwater UU Unconsolidated Undrained Triaxial measured at 2.3 m depth upon completion of drilling. UC Unconfined Compression K Lab Permeability **DS** Direct Shear 3) No significant levels of methane were detected during drilling and upon completion of borehole. WATER LEVELS

♀ Apparent

Measured

Artesian (see Notes)

BH09-3

	Sheet 1 of 1												
P	PROJECT_Proposed Residential Development, George Street, Port Stanley, Ontario PROJECT NO												
	RILL TY	PE/METHOD Track-mounted CME-55		DAT	ES:	Borin	g <u>D</u>	ec 22/0	D/ 9	ATUM <u>N/A</u> Water Level <u>Dec 22/09</u>			
	E			T	1	SAMPLES				SHEAR STRENGTH			
DHPTH (m	LEVA T-ON (m)	STRATA DESCRIPTION	STRATA PLOT	SOT FTM	T Y P E	NUX BER	RUCOVURY (E or	N VALUE (blows) or RQD (%)	OT HER TESTS	 S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane 40, 80 kPa Atterberg Limits and Moisture W_p W W_L ■ SPT N Value × Dynamic Cone 10, 20, 30, 40 			
E.	0.30	TOPSOIL, brown/black sandy loam, trace	<u>N 17</u>	ż			(70)			┟╤╎┽╒┊╤┽╴╤┊╤╪╼┊╴			
- - -1 -	0.30	SANDY SILT, brown, trace gravel, loose, very moist		· · ·		.S1	300	7					
- 2						S2	300	6					
		-becoming grey and very loose below 2.3 m depth		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			S3	300	2		
		-some clay to clayey and very soft below 3.0 m depth				S4	400	2					
-4		-coarse gravel and trace cobbles below 4.6 m depth				S5	0	19					
-6													
-	6 56	-becoming hard below 6.1 m depth				S6	200	75					
		End of Borehole at 6.56 m depth	<u>4. [4 -</u>		4								
-7													
						CALAT							
NOT 1) B Li lo	VOTES) Borehole interpretation requires assistance by Trow before use by others. Borehole Logs must be read in conjunction with Trow Report LNGE00009968A. For definition of terms used on logs, see sheets prior to logs.							GEND er Samp ore (eg. l STS Gravity ter alvsis	IE 🛛 BQ, NG C C CD	SS Split Spoon Tube (a, etc.) Tube Consolidation Consolidated Drained Triaxial			
 2) Borehole Open to 2.1 m depth upon completion of drilling; groundwater measured at 2.1 m depth upon completion of drilling. 3) No significant levels of methane were detected during drilling and upon completion of borehole. 3) No significant levels of methane were detected during drilling and upon completion of borehole. 3) No significant levels of methane were detected during drilling and upon completion of borehole. 3) No significant levels of methane were detected during drilling and upon completion of borehole. 3) No significant levels of methane were detected during drilling and upon completion of borehole. 								Unconsolidated Undrained Triaxial Unconfined Compression Direct Shear					
						- m	haidt	•	-a- IVICi	Antesian (see Notes)			

Frow

BOREHOLE LOG

BH09-4 Sheet 1 of 1

London Branch

PR	PROJECT_Proposed Residential Developement, George Street, Port Stanley, Ontario PROJECT NO. LNGE00009968A									
CLI	ENT_	387476 Ontario Ltd.							D	ATUM <u>N/A</u>
		² E/METHOD <u>Track-mounted CME-55</u>		DAT	ES:	Borin	g <u>D</u>	ec 22/0	9	Water Level Dec 22/09
DHPTH (m)	ELEVAT-ON (m)	STRATA DESCRIPTION	ST-RATA PLOT	WHLL LOG	ТҮРЕ	SAI NU MBER	VIPLE RECOVERY (mor)	S N VALUE (blows or RQD (%)	OTHER TES	SHEAR STRENGTH S Field Vane Test (#=Sensitivity)
	0.30	TOPSOIL, brown/black sandy loam, trace cobbles, loose, moist SANDY SILT, brown, fine grained, trace clay, loose, very moist				S1	300	8		
- - 2		-becoming dilatant, wet and very loose below 1.5 m depth				S2	300	4		
3		-becoming grey with trace to some clay and very moist to wet		Ţ		S3	300	1		
- - 4 -						S4	150	2		
- - -5 -	4.60	CLAYEY SILT, grey, some fine grained sand, firm, wet				S5	175	6		
 - 6 	6.56	SAND AND GRAVEL, grey, compact, moist				S6	150	21		
-7		End of Borehole at 6.56 m depth	Υ 1 Υ							
NOTE 1) Bore Borre logs 2) Bore mea 3) No s com	OTES Borehole interpretation requires assistance by Trow before use by others. Borehole Logs must be read in conjunction with Trow Report LNGE00009968A. For definition of terms used on logs, see sheets prior to logs. Borehole open to 2.3 m depth upon completion of drilling; groundwater measured at 2.3 m depth upon completion of drilling. No significant levels of methane were detected during drilling and upon completion of borehole.						PLE LE S Aug ock Co R TES ecific drome ve An it Weig Id Per Perm R LE oparen	GEND er Samp ore (eg. STS Gravity ter alysis ght meability neability /ELS t	le ⊠ BQ, NC CD CU UU y UC DS ¥ Me	SS Split Spoon ST Shelby Tube 2, etc.) ST Shelby Tube Consolidation Consolidated Drained Triaxial Consolidated Undrained Triaxial Unconsolidated Undrained Triaxial Unconfined Compression Direct Shear asured Artesian (see Notes)

BH09-5 Sheet 1 of 1

London Branch

-3

-4

-5

-6

5.20

6.56

PEAT, black, trace organics, very loose to loose, wet

		387476 Ontario Ltd.		DAT					D/	ATUM <u>N/A</u>
		The Hod		DAT	ES: 1	Soring	J_De	c 22/09)	Water Level Dec 22/09
DWPTH (m)	ELEVAT-ON (E)	STRATA DESCRIPTION	STRATA PLOT	₩ш⊥ц цос	ТҮрш	SAN NU MBER	IPLES RECOVERY (mm) or)	N VALUE (blows) or RQD (%)		SHEAR STRENGTH ■ S Field Vane Test (#=Sensitivity ▲ Penetrometer ■ Torvane 4080 kPa Atterberg Limits and Moisture W _P W W _L = SPT N Value × Dynamic Cone 10 20 30 40
-1	0.35	TOPSOIL, brown/black sandy loam, trace cobbles, loose, moist SANDY SILT, brown, trace clay, loose, very moist		Ţ		S1	200	5		
2		-becoming dilatant, wet and very loose below 1.5 m depth				S2	450	2		
		-becoming grey with trace clay below 2.3 m depth				S3	300	4		

<u> 11 1</u>

4 14

S4

S5

S6 200

300

300

2

4

- 7 -	End of Borehole at 6.56 m depth										
<u>NOTES</u> 1) Borehole i Borehole i LNGE000 logs. 2) Borehole o measured 3) No signific completion	nterpretation requires assistance by Trow before u Logs must be read in conjunction with Trow Report 09968A. For definition of terms used on logs, see open to 0.9 m depth upon completion of drilling; gro at 0.9 m depth upon completion of drilling. ant levels of methane were detected during drilling n of borehole.	se by t sheets oundw and u	others s prior vater upon	to	SAM ⊠ P OTHI G SI H Hy S Si Y Ur P Fic K La WATI ¥ A	PLE L S Aug cock C ER TE pecific /drome eve Ar hit Wei eld Per b Perr ER LE ppare	EGEND ger Samp ore (eg. STS Gravity eter nalysis ight rmeability weability VELS nt	ole IZ BQ, N C C U ty U ty U	SS Split Sp. NQ, etc.) Consolidatio Consolidati U Consolidati U Unconsolid C Unconfined S Direct Shea leasured	Don ed Dra ed Uni ated Uni ated Uni ated Uni ated Uni	ST Shelby Tube VN Vane Sample ained Triaxial drained Triaxial Jndrained Triaxial pression Artesian (see Notes)

L	ondon I	Branch	זאנ		U		LÜ	G		Sheet 1	3-0
P	ROJEC	Proposed Residential Developement, 0	Seorge	e Stre	et, F	Port S	tanle	/. Ontar	io PF	ROJECT NO. LNGE000099684	4
CI	LIENT_	387476 Ontario Ltd.							D/	TUM <u>N/A</u>	<u>`</u>
DI	RILL TY	PE/METHOD <u>Track-mounted CME-55</u>		DAT	ES:	Borin	g <u>D</u>	ec 22/09)	Water Level Dec 22/0)9
D비우 - H (m)	ELEVAT-ON (m)	STRATA (DESCRIPTION	STRATA PLOT	Sett Tog	ТҮРЕ	SAI NU BER	MPLE RECOVERY (mm or (%)	S VALUE (blows) or RQD (%)	OF THER FUSTS	SHEAR STRENGTH S Field Vane Test (#=Sensitivit Penetrometer ■ Torvane 40 , 80 kPa Atterberg Limits and Moisture W _P W WL SPT N Value × Dynamic Cond 10 , 20 , 30 , 40	y) e
-	0.30	TOPSOIL, brown/black sandy loam, trace cobbles, loose, moist	<u>x11, x</u>								訂
- - -1 -		-becoming dilatant wet and very loose below		Y		S1	350	10	R		
- 2 -		1.5 m depth				S2	450	4			
- 3 - -					X	S3 S4	300	2			
-4 - - - - - - - -	5.00	-trace organics below 4.6 m depth PEAT, black, trace organics, very loose to loose, wet				S5	300	3			
- -6 -	6.56		7777 777 7777 7777 7777 7777 7777			S6					- - - - - - - - - - - - - - - - - - -
-7		End of Borehole at 6.56 m depth									
						SAME		GEND			Ŀ
NOTI 1) Bo Bo LN log 2) Bo me 3) No coi	Borehole interpretation requires assistance by Trow before use by others. Borehole Logs must be read in conjunction with Trow Report Borehole Logs must be read in conjunction with Trow Report Borehole Logs must be read in conjunction with Trow Report Borehole Logs must be read in conjunction with Trow Report Borehole Logs must be read in conjunction with Trow Report Borehole Logs must be read in conjunction with Trow Report Borehole Logs must be read in conjunction of terms used on logs, see sheets prior to logs. Borehole Logs must be read in conjunction of terms used on logs, see sheets prior to logs. Consolidated Drained Triaxial Borehole open to 0.9 m depth upon completion of drilling. Sieve Analysis CU Consolidated Undrained Triaxial Y Unit Weight UU Unconsolidated Undrained Triaxial P Field Permeability UC Unconfined Compression No significant levels of methane were detected during drilling and upon completion of borehole. Watter Level S S Direct Shear										
	WATER LEVELS ↓ Apparent ↓ Measured ★ Artesian (see Notes)										

BH09-7 Sheet 1 of 1

London Branch

PF	PROJECT Proposed Residential Developement, George Street, Port Stanley, Ontario PROJECT NO. LNGE00009968A										
	_IENT	387476 Ontario Ltd.							D/	ATUM <u>N/A</u>	
		PE/METHOD <u>Track-mounted CME-55</u>		DAT	ES:	Boring	<u>De</u>	ec 22/09		Water Level Dec 22/09	
Duptit (m)	ELEVAT-ON (m)	STRATA DESCRIPTION	STRATA PLOT	Зштт тод	ТҮРЕ	SAM NUMBER	MPLES RECOVERY (mor)	N VALUE (blows) or RQD (%)	OTHER TESTS	SHEAR STRENGTH ◆ S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane 40,80 kPa Atterberg Limits and Moisture W _P W W _L ● SPT N Value × Dynamic Cone 10,20,30,40	
F0-	0.35	TOPSOIL, brown/black sandy loam, trace cobbles, loose, moist	<u>x 1/2</u> x								
- - 1 - - - - - - 2	0.00	SANDY SILT, brown, fine grained, loose to compact, very moist to wet				S1	450 200	6			
- - -3 -		-becoming grey below 2.3 m depth		¥		53 54	250	2			
- 4	5.20	-trace clay, very loose and wet below 4.6 m depth				S5	275	4			
- - -6 -	0.50	PEAT, black, trace organics, very loose to loose, wet			X	S6					
	0.56	End of Borehole at 6.56 m depth	$\left[- \right]$		<u>/ </u>						
- -7 -											
NOT 1) Bo LN log 2) Bo ma 3) No co	<u>IOTES</u>) Borehole interpretation requires assistance by Trow before use by others. Borehole Logs must be read in conjunction with Trow Report LNGE00009968A. For definition of terms used on logs, see sheets prior to logs.) Borehole open to 2.7 m depth upon completion of drilling; groundwater measured at 2.7 m depth upon completion of drilling.) No significant levels of methane were detected during drilling and upon completion of borehole.						SAMPLE LEGEND ⊠ AS Auger Sample ⊠ SS Split Spoon ■ ST Shelby ■ VN Vane S OTHER TESTS G Specific Gravity H Hydrometer S Sieve Analysis Y Unit Weight P Field Permeability K Lab Permeability WATER LEVELS				

BH09-8 Sheet 1 of 1

London Branch

PF	PROJECT Proposed Residential Developement, George Street, Port Stanley, Ontario PROJECT NOLNGE00009968A									
	RILL TY	PE/METHOD Track-mounted CME-55		DAT	ES:	Borin	j <u>D</u> e	c 22/0	D/ 9	ATUM <u>N/A</u> Water Level <u>Dec 22/09</u>
Dшртн н	ELEVAT-ON (m)	STRATA DESCRIPTION	STRATA PLOT	WELL LOG	- Ч Ч	SAN NU MBER	RECOVERY (mm) or	N VALUE (blows) or RQD (%)	OT HUR TUSTS	SHEAR STRENGTH ■ S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane 4080 kPa Atterberg Limits and Moisture W _P W W _L ■ SPT N Value × Dynamic Cone
-0 - - - - - - - -	0.30	TOPSOIL, brown/black sandy loam, trace cobbles, loose, moist SANDY SILT, brown, loose, very moist to wet			X	S1	(70)			
2		-becoming grey below 2.3 m depth		•	X	S2 S3	250	3		
	3.80	CLAYEY SILT, grey, some fine grained sand, soft, wet		-		S4	275	2	•	
- -5 - - - - - - - 6 -	5.00	PEAT, black, trace organics, very loose to loose, wet				S5	275	4		
-7	6.56	End of Borehole at 6.56 m depth								
NOT 1) Bo LN log 2) Bo me 3) No col	OTES Borehole interpretation requires assistance by Trow before use by others. Borehole Logs must be read in conjunction with Trow Report LNGE00009968A. For definition of terms used on logs, see sheets prior to logs. Borehole open to 3.0 m depth upon completion of drilling; groundwater measured at 3.0 m depth upon completion of drilling. No significant levels of methane were detected during drilling and upon completion of borehole.					SAMI ⊠ A ⊡ R OTHE G Sp H Hy S Sie Y Un P Fie K Lal WATE ¥ A	PLE LE S Aug ock Co ER TE becific drome ve An it Weig eld Per b Pern ER LE pparer	EGEND er Samp ore (eg. STS Gravity ter alysis ght meability vELS nt	Ile Z BQ, NG CC CL UL Y UC DS	SS Split Spoon ST Shelby Tube Q, etc.) ST Shelby Tube Consolidation Consolidated Drained Triaxial J Consolidated Undrained Triaxial J Unconsolidated Undrained Triaxial Consolidated Compression Direct Shear easured Artesian (see Notes)

2016 TP LOGS

TP1-150mm topsoil, sandy 0.15m-0.5m, Fill, Sandy Silt, brn/gry, trace clay, organics, comp, moist 0.5m-1.5m, Sandy Silt, brn/gry, trace clay, fine gravel, comp, moist 1.5m-2.5m, Clayey Silt, brn/gry, trace sand and gravel, stiff 2.5m-3.5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 2.5-3.5m, water@3m

TP2, 300mm topsoil, sandy

0.3m-1m, Fill, Sandy Silt, drk brn, traces steel, wood, loose, moist 1m-2m, Sandy Silt, brn/gry, trace clay, weathered, loose, v.moist, dilatant with depth 2m-5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet

Sidewalls unstable 3m-5m, water@5m

TP3, 250mm topsoil, sandy

0.25m-1.7m, Silty Sand, brn, weathered, comp, moist, dilatant with depth, trace shells 1.7m-3m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet

Sidewalls very unstable 2m-3m, water @ 3m

TP4, 300mm topsoil, sandy 0.3m-2m, Sandy Silt, brn, trace peat, loose to comp, moist 2m-3.5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet

Sidewalls very unstable 2.5m-3.5m, water @3.5m

TP5. 300mm topsoil. sandv 0.3m-2m, Silty Sand, brn, weathered, comp, moist, dilatant with depth 2m-4m, Alluvial Sandy Silts, gry, some clay, containing peat pockets, occasional shells, v loose, wet

TP6, 300mm topsoil, sandy 0.3m-1.7m, Silty Sand, brn, weathered, comp, moist, dilatant with depth 1.7m-5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose. wet Sidewalls unstable 3m-5m, water @5m

TP7, 300mm topsoil, sandy 0.3m-2.7m, Sandy Silt Till, brn/gry, trace clay, stiff, dtpl 2.7m-4.2m, Alluvial Sandy Silts, gry, trace clay, trace peat pockets, occasional shells, loose, very moist Sidewalls stable, dry

TP8, 300mm topsoil, sandy 0.3m-1.5m, Sandy Silt, brn, comp, moist 1.5m-2m, Silty Sand, brn, weathered, comp, moist, dilatant with depth 2m-5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 4m-5m, water @5m

TP9, 250mm topsoil, sandy 0.25m-2.5m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 2.5m-5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 4m-5m, water @5m

TP10, 300mm topsoil, sandy 0.3m-2.3m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 2.3m-4m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 3m-4m, water@4m

TP11, 300mm topsoil, sandy

0.3m-1.2m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 1.2m-2.8m, Clayey Silt, brn, with sand, weathered, firm, moist 2.8m-4.5m, Alluvial Sandy Silts, gry, trace clay, trace peat pockets, occasional shells, loose, very moist Sidewalls unstable 3.5m-4.5m, water@4.5m

TP12, 300mm topsoil, sandy

0.3m-1.1m, Sandy Silt, brn, comp, moist

1.1m-2m, Silty Sand, brn, weathered, comp, moist, dilatant with depth

2m-4m, Alluvial Sandy Silts, gry, trace clay, trace peat pockets, occasional shells, loose, very moist

Sidewalls unstable 3m-4m, water @4m

TP13, 250mm topsoil, sandy 0.25m-1m, Sandy Silt, brn, comp, moist 1m-1.7m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 1.7m-4m Silty Sand, brn, weathered, comp, moist Sidewalls unstable 3-4m, water@4m

TP14, 300mm topsoil, sandy 0.3m-2.3m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 2.3m-2.6m, Coarse Sand and Gravel, brn, comp, wet 2.6m-4m, Sandy Silt Till, gry, trace clay, stiff, moist Sidewalls unstable 2m-2.6m, water@3m upon completion

TP15, 200mm topsoil, sandy 0.2m-2m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 2m-3.5m, Coarse Sand and Gravel, brn, comp, wet 3.5-4m, Alluvial Sandy Silts, gry, trace clay, trace peat pockets, occasional shells, loose, very moist Sidewalls unstable 2-4m, water@3.5m

TP16, 300mm topsoil, sandy 0.3m-0.8m, Sandy Silt, brn, comp, moist 0.8m-2m, Sandy Silt Till, brn, with clay, stiff, moist 2m-3.5m, SAA but grey Sidewalls stable, dry

TP17, 300mm topsoil, sandy 0.3m-0.6m, Fill, Sandy Silt, brn/gry, trace clay, organics, comp, moist 0.6m-2.9m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 2.9m-3.5m, Clayey Silt Till, brn/gry, embedded sand and gravel, stiff Sidewalls stable, dry

TP18, 250mm topsoil, sandy 0.25m-1.5m, Sandy Silt, brn, comp, moist 1.5m-3m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 3m-4m, Clayey Silt Till, brn/gry, embedded sand and gravel, some wet sand seams, stiff, Sidewalls stable, water seepage at 3.5m

TP19, 250mm topsoil, sandy 0.25m-1.5m, Sandy Silt, brn, comp, moist 1.5m-4m, Silty Sand, brn, weathered, comp, v moist, dilatant with depth Sidewalls unstable 3m-4m, water@4m

TP20, 300mm topsoil, sandy

0.3m-2.5m, Sandy Silt, brn, trace clay, weathered, loose, v.moist, dilatant with depth 2.5m-3.5m, Silty Sand, gry, weathered, loose, wet 3.5m-3.75m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 3m-3.75, <u>water@3.75m</u>

TP21, 300mm topsoil, sandy 0.3m-1m, Silty Sand, brn, trace clay, comp, moist 1m-2.5m, Silty Sand, brn, weathered, loose, v moist, dilatant with depth 2.5m-3m, SAA but gry, wet 3m-5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable, water@5m Client: Wastell Homes Project Name: Final Geotechnical Report Project Location: George Street, Port Stanley, ON Project Number: LON00014790GE Date: August 29, 2017

TP22, 200mm topsoil, sandy 0.2m-1.5m, Sandy Silt, brn, comp, moist 1.5m-2.7m, Silty Sand, brn, weathered, loose, v moist, dilatant with depth 2.7m-5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 3m-5m, water@5m

TP23, 300mm topsoil, sandy 0.3m-2.1m, Silty Sand, brn, weathered, comp, v moist, dilatant with depth 2.1m-5m, Alluvial Sandy Silts, gry, trace clay, trace peat pockets, occasional shells, loose, v moist Sidewalls unstable 3m-5m, water @5m

TP24, 150mm topsoil, sandy 0.15m-2m, Clayey Silt Till, brn, embedded sand and gravel, stiff, dtpl 2m-3.5m. SAA but gry Stable, dry

TP25, 300mm topsoil, sandy 0.3m-1m, Silty Sand, brn, comp, moist 1m-3m, Silty Sand, brn/gry, weathered, loose, v moist, dilatant with depth 3m-4m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 3m-4m, water @4m

TP26, 300mm topsoil, sandy 0.3m-2m, Sandy Silt, brn, trace clay, weathered, loose, moist, dilatant with depth 2m-3.5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet

Sidewalls very unstable, water@3m

TP27, 300mm topsoil, sandy 0.3m-1.5m, Silty Sand, brn, comp, moist 1.5m-2m, Sandy Silt, brn/gry, trace clay, weathered, loose, moist, dilatant with depth 2m-4m, Sandy Silt, gry, trace clay, weathered, loose, v moist, dilatant with depth, trace shells Sidewalls unstable, water@4m

TP28, 300mm topsoil, sandy 0.3m-1m, Silty Sand, brn, comp, moist 1m-2.3m, Sandy Silt, brn/gry, trace clay, weathered, loose, moist, dilatant with depth 2.3m-3.5m, Alluvial Sandy Silts, gry, trace clay, trace peat pockets, occasional shells, loose, v moist Sidewall unstable 3m-3.5m, dry Client: Wastell Homes Project Name: Final Geotechnical Report Project Location: George Street, Port Stanley, ON Project Number: LON00014790GE Date: August 29, 2017

TP29, 300mm topsoil, sandy 0.3m-1m, Silty Sand, brn, comp, moist 1m-2m, Sandy Silt, brn/gry, trace clay, weathered, loose, moist, dilatant with depth 2m-3m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls very unstable 2m-3m, water@3m

TP30, 250mm topsoil, sandy 0.25m-1m, Silty Sand, brn, comp, moist 1m-2m, Sandy Silt, brn/gry, trace clay, weathered, loose, v moist, dilatant with depth 2m-4m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 3m-4m, water@4m

TP31, 300mm topsoil, sandy 0.3m-1.2m, Silty Sand, brn, weathered, comp, moist 1.2m-2m, SAA but dilatant 2m-3.5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 3m-3.5m, water@3m

TP32, 300mm topsoil, sandy 0.3m-1.2m, Sandy Silt, brn, comp, moist 1.2m-1.7m, Silty Sand, brn/gry, weathered, loose, v moist, dilatant with depth 1.7m-4.5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 4m-4.5m, <u>water@4.5m</u>

TP33, 300mm topsoil, sandy 0.3m-2.3m, Sandy Silt, brn, weathered, loose, moist, dilatant with depth 2.3m-4m, SAA but gry, trace clay, shells, loose, v moist Sidewalls stable,

TP34, 200mm topsoil, sandy 0.2m-1m, Sandy Silt, brn/gry, comp, moist, trace shells 1m-3.5m, SAA but gry, trace clay, loose, v moist, trace shells Sidewalls unstable 3-3.5m, water @3.5m

TP35, 500mm topsoil, sandy 0.5m-1.5m, Silty Sand, brn, weathered, comp, moist 1.5m-2.5m, Silty Sand, brn, weathered, comp, moist, dilatant with depth 2.5m-5m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 4m-5m, water@5m Client: Wastell Homes Project Name: Final Geotechnical Report Project Location: George Street, Port Stanley, ON Project Number: LON00014790GE Date: August 29, 2017

TP36, 250mm topsoil, sandy 0.25m-0.6m, Fill, Fill, Sandy Silt, brn/gry, trace clay, organics, comp, moist 0.6m-2.7m, Silty Sand, brn, weathered, comp, moist, dilatant with depth 2.7m-4m, Alluvial Sandy Silts, gry, trace clay, containing peat pockets, occasional shells, v loose, wet Sidewalls unstable 3m-4m, water@4m

TP1A, 300mm topsoil, sandy 0.3m-2m, Sandy Silt, brn, weathered, loose, moist, dilatant with depth 2m-3.5m, Sandy Silt Till, gry, with clay, trace wet gravel seams, stiff, dtpl Sidewalls unstable 3m-3.5, water @3.2m

Note: brn: brown gry: grey v: very drk: dark comp: compact SAA: same as above

² OV	n
	J.
	-

DEPTH

1 bg

-0

-1

-2

-3

-4

-5

-6

2) 3)

BOREHOLE LOG

MW1 Sheet 1 of 1

CLIENT Wastell Homes PROJECT NO. LON-00014790-GE PROJECT Proposed Residential Development DATUM Geodetic LOCATION George Street, Port Stanley, Ontario DATES: Boring July 21, 2016 Water Level Aug. 1/16 SHEAR STRENGTH SAMPLES STRATA M CONTENT S Field Vane Test (#=Sensitivity) WELL Ë V A I S T U R E ▲ Penetrometer Torvane Ν **LCOVERY** NUMBER VALUE **STRATA** 100 200 kPa T Y P E Atterberg Limits and Moisture DESCRIPTION L OG Ô PLQ W_P W W_L θ (~m) SPT N Value × Dynamic Cone (%) (%) 183.3 (blows) 10 20 30 40 183.2 TOPSOIL - 150 mm FILL - silty sand, grey, coarse grained, very loose, very moist SS S1 75 2 17 181.9 ALLUVIAL SANDY SILT - grey, trace to some clay, trace to some peat, trace to some shells, very loose to loose, very moist to wet SS S2 75 4 26 SS S3 75 1 39 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ _ SS S4 75 2 39 - some coarse sand seams near 3.3 m bgs SS S5 100 29 1 - some coarse sand and stiff clays with depth SS S6 100 3 29 SS S7 100 4 27 176.8 End of Borehole at 6.6 m bgs. SAMPLE LEGEND AS Auger Sample D SS Split Spoon ST Shelby Tube **NOTES** Rock Čore (eg. BQ, NQ, etc.) VN Vane Sample 1) Borehole Log interpretation requires assistance by exp before use by others. OTHER TESTS Borehole Logs must be read in conjunction with exp Report LON-00014790-GE. For definition of terms used on logs, see sheet prior to G Specific Gravity C Consolidation CD Consolidated Drained Triaxial H Hydrometer logs.) bgs denotes below ground surface.) Water Level Readings: July 21, 2016 - 2.0 m bgs, 181.3 m ASL August 1, 2016 - 2.2 m bgs, 181.1 m ASL S Sieve Analysis CU Consolidated Undrained Triaxial **γ** Unit Weight P Field Permeability UU Unconsolidated Undrained Triaxial UC Unconfined Compression K Lab Permeability DS Direct Shear WATER LEVELS ♀ Apparent Measured Ā Artesian (see Notes)

No.	
°РХ	()
U/	\sim

MW2

Sheet 1 of 1

Wastell Homes CLIENT PROJECT NO. LON-00014790-GE PROJECT Proposed Residential Development DATUM Geodetic LOCATION George Street, Port Stanley, Ontario DATES: Boring July 21, 2016 Water Level Aug. 1/16 SHEAR STRENGTH SAMPLES STRATA CONTENT MOUSTURE S Field Vane Test (#=Sensitivity) E V A T WELL R DEPTH Torvane Penetrometer Ν **ECOVERY** VALUE NUMBER **STRATA** 200 kPa 100 T Y P E Atterberg Limits and Moisture DESCRIPTION **Ö** N L OG PLQ W_P W W_L е (~m) SPT N Value × Dynamic Cone ۱bg 182.0 (%) (blows) (%) 30 10 20 40 -0 TOPSOIL - 400 mm 1. 111 181.6 CLAYEY SILT - brown, some fine sand, firm, moist to very moist -1 -2 - becoming grey near 2.3 m bgs -3 -4 177.4 End of Borehole at 4.6 m bgs. -5 -6 SAMPLE LEGEND AS Auger Sample D SS Split Spoon ST Shelby Tube **NOTES** Rock Čore (eg. BQ, NQ, etc.) VN Vane Sample 1) Borehole Log interpretation requires assistance by exp before use by others. Borehole Logs must be read in conjunction with exp Report LON-00014790-GE. For definition of terms used on logs, see sheet prior to OTHER TESTS G Specific Gravity C Consolidation CD Consolidated Drained Triaxial logs. H Hydrometer bgs denotes below ground surface.
Water Level Readings: July 21, 2016 - 2.0 m bgs, 180.0 m ASL August 1, 2016 - 2.4 m bgs, 179.6 m ASL S Sieve Analysis CU Consolidated Undrained Triaxial **γ** Unit Weight P Field Permeability UU Unconsolidated Undrained Triaxial UC Unconfined Compression DS Direct Shear K Lab Permeability WATER LEVELS ♀ Apparent Measured Ā Artesian (see Notes)

1	
"OV	n
	U.
	-

MW3

Sheet 1 of 1

CL	IENT	Wastell Homes							PR	OJE	CT N	0	LON-	-0001	4790	-GE	
PF	ROJECT	Proposed Residential Development							DA	TUM	G	eodet	lic				
LO	CATION	George Street, Port Stanley, Ontario		DAT	ES: E	Boring	Ju	ly 21, 2	016			Wate	r Lev	/el <u>A</u>	ug. 1	I/16	
	⊔_ ₩>⊄⊢−Oz	STRATA DESCRIPTION	STRATA PLO	WHLL LOG	ТҮРЕ	SAM NUMBER	PLES RECOVERY	N VALUE	CON⊢≣Z⊢ MO−⊗⊢DR≣	≠S ▲P	S Field enetro	HEAR Vane ometer 100 erg Lin Wp	STRE	INGT (#=Se Torv nd Mc WL	H nsitiv ane 200 pistur	r ity) kPa ï e	
(m bgs)	^(~m) 182.7		Ť				(%)	(blows)	(%)	• S	PT N ' 1 <u>0</u>	Value 20	×)ynan 30	nic Co 40	one	
-0 -	182.5	TOPSOIL - 250 mm	<u>x, 17</u> . <u>x</u>					. ,			ШΠ			ΪŢ	Ш	╨	t
- —1		SANDY SILT - brown, weathered, dilatant with depth, very loose to loose, very moist to wet			ss	S1	75	6	22			(-
- 2	180.6				ss	S2	100	3	26	•						 	-
_		ALLUVIAL SANDY SILT - grey, some clay, some peat, some shells, very loose, very moist to wet	<u>5,5,5,5,5,5,5,5,5</u> 5, <u>5,5,5,5,5,5,5,5</u> ,5,5,5,5,5,5,5,5,5,5,		ss	S3	100	2	40	•					•		-
-3			<u>555555555</u>		ss	S4	100	1	49	•							 5 -
-4			<u>, ; ; ; ; ; ; ; ; ; ;</u>		ss	S5	100	1	73	•							- 7: -
- 5			<u>\$\$\$</u> \$\$\$\$\$\$ <u>\$</u> \$\$\$\$		ss	S6	100	2	116	•							- - 0 - -
6		- some coarser sands near 5.6 m bgs	<u>5 5 5 5 5 5 5 5 5 5 5</u> 5 5 5 5 5 5 5 5 5														-
			- 5 5 5 5		ss	S7	100	0	41 (0		
-	176.2	End of Borehole at 6.6 m bgs.	사사												i I I I		╈
7																	
NOTES 1) Borehole Log interpretation requires assistance by exp before use by others. Borehole Logs must be read in conjunction with exp Report LON-00014790-GE. For definition of terms used on logs, see sheet prior to logs. SAMPLE LEGEND Image: Strick Spoon in Strick Sp						Tube amp al	; le s)										

NOV.	n
EX	
	\sim

MW4 Sheet 1 of 1

Wastell Homes CLIENT PROJECT NO. LON-00014790-GE PROJECT Proposed Residential Development DATUM Geodetic LOCATION George Street, Port Stanley, Ontario DATES: Boring July 21, 2016 Water Level Aug. 1/16 SHEAR STRENGTH SAMPLES STRATA CONTENT MOUSTURE S Field Vane Test (#=Sensitivity) WELL Ë V A T R DEPTH Torvane Penetrometer Ν **ECOVERY** VALUE NUMBER **STRATA** 200 kPa 100 T Y P E Atterberg Limits and Moisture DESCRIPTION **Ö** N L OG PLQ W_P W W_L е (~m) SPT N Value × Dynamic Cone n bg 185.7 (%) (blows) (%) 10 20 30 40 -0 TOPSOIL - 300 mm 185.4 SANDY SILT - brown, fine grained, trace to some clay, loose to compact, very moist to wet -1 -2 -3 - becoming grey near 3.8 m bgs -4 181.1 End of Borehole at 4.6 m bgs. -5 -6 SAMPLE LEGEND AS Auger Sample D SS Split Spoon ST Shelby Tube **NOTES** Rock Čore (eg. BQ, NQ, etc.) VN Vane Sample Borehole Log interpretation requires assistance by exp before use by others. Borehole Logs must be read in conjunction with exp Report LON-00014790-GE. For definition of terms used on logs, see sheet prior to OTHER TESTS G Specific Gravity C Consolidation CD Consolidated Drained Triaxial logs. H Hydrometer bgs denotes below ground surface.
Water Level Readings: July 21, 2016 - 4.2 m bgs, 181.5 m ASL August 1, 2016 - 3.6 m bgs, 182.1 m ASL S Sieve Analysis CU Consolidated Undrained Triaxial **γ** Unit Weight P Field Permeability UU Unconsolidated Undrained Triaxial UC Unconfined Compression DS Direct Shear K Lab Permeability

Measured

Ā

Artesian (see Notes)

n	
^N OV	n
	U.
	-

MW5 Sheet 1 of 1

Wastell Homes

CLIENT PROJECT NO. LON-00014790-GE PROJECT Proposed Residential Development DATUM Geodetic LOCATION George Street, Port Stanley, Ontario DATES: Boring July 21, 2016 Water Level Aug. 1/16 SHEAR STRENGTH SAMPLES STRATA M CONTENT S Field Vane Test (#=Sensitivity) WELL Ë V A DEPTH I STURE Penetrometer Torvane Ν **LCOVERY** NUMBER VALUE **STRATA** 100 200 kPa T Y P E Atterberg Limits and Moisture DESCRIPTION **Ö** N L OG PLQ W_P W W_L е (~m) SPT N Value × Dynamic Cone n bg (%) (%) 182.4 (blows) 10 20 30 40 -0 TOPSOIL - 250 mm 182.2 SANDY SILT - brown, weathered, dilatant with depth, loose to compact, very moist to wet SS S1 75 12 21 -1 24 SS S2 75 6 - becoming grey near 1.8 m bgs -2 180.3 ALLUVIAL SANDY SILT - grey, trace to some clay, trace to some peat, trace to some shells, very loose, very moist to wet SS S3 100 2 50 -3 SS S4 100 1 26 φ -4 SS S5 100 0 31 SS S6 100 1 74 -5 176.8 SAND - grey, fine grained, loose, wet -6 SS S7 100 4 22 175.9 End of Borehole at 6.6 m bgs. SAMPLE LEGEND AS Auger Sample D SS Split Spoon ST Shelby Tube **NOTES** Rock Čore (eg. BQ, NQ, etc.) VN Vane Sample 1) Borehole Log interpretation requires assistance by exp before use by others. OTHER TESTS Borehole Logs must be read in conjunction with exp Report LON-00014790-GE. For definition of terms used on logs, see sheet prior to G Specific Gravity C Consolidation CD Consolidated Drained Triaxial H Hydrometer logs. bgs denotes below ground surface.
Water Level Readings: July 21, 2016 - 2.4 m bgs, 180.0 m ASL August 1, 2016 - 2.5 m bgs, 179.9 m ASL S Sieve Analysis CU Consolidated Undrained Triaxial **γ** Unit Weight P Field Permeability UU Unconsolidated Undrained Triaxial UC Unconfined Compression K Lab Permeability DS Direct Shear WATER LEVELS

♀ Apparent

Measured

Ā

Artesian (see Notes)

Appendix B – Limitations and Use of Report

LIMITATIONS AND USE OF REPORT

BASIS OF REPORT

This report. Report in is based on site conditions known or inferred by the geotechnical investigation undertaken as of the base of the Report. Should changes occur which potentially impact the geotechnical condition of the site or fill construction is implemented more than one year following the date of the Report, the recommendations of eld main rebure revevaluation.

The Report is provided solel, for the guidance of design engineers and on the assumption that the design will be in accordance with applicable codes and standards. Any changes in the design features which potential is moast the gestephnical analyses or issues concerning the geotechnical aspects of applicable codes and standards will necessitate a review of the design by explicitional field work and reporting may also be required.

Where applicable recommended field services are the minimum necessar, to ascertain that construction is being carried out in general conformit, with building code guidelines, generally accepted practices and explain recommendations while reduction in the level of services recommended will result in explored long qualified ophions regarding the adequacy of the work levp can assist design professionals or contractors retained of the Client to review applicable plans drawings, and specifications as they relate to the Report or to conduct field reviews during construction.

Contractors contemplating work on the site are responsible for conducting an independent investigation and interpretation of the corehole results contained in the Report. The number of poreholes necessary to determine the costsized underground conditions as they impact construction costs, techniques, sequencing, equipment and scheduling may be greater than those carried out for the purpose of the Report.

Classification and identification of soils rocks, geological units, contaminant, materials, pulliding, environment, assessments, and engineering estimates are based on investigations performed in accordance with the standard of care set out service and require the exercise of judgment. As a result, even comprehensive sampling, and testing programs, mplemented, with the appropriate equipment by experienced personnel may tail to locate some constraints and engineering environments, experienced personnel may tail to locate some constraints in useful or some that every according environment in estigations are based on assumptions of what evids between the actual constraints are precised actual conditions, will not be detected a documents or records summarizing investigations are based on assumptions of what evids between the actual conditions may use significantly between the points, intrastigated. Some conditions are based on assumptions of what evids between the actual conditions may use significantly between the points, is the to record on a support of the study actions are points at the time of sampling according envices that evids between the points at the time of sampling based on assumptions of what evids between the actual points actives according envices the actual conditions are based on assumptions of what evids between the actual points actives according envices the actual conditions are based on assumptions of what evids between the actual points active actual conditions are supported to the source of the actual conditions are used to the points at the time of sampling based on assumption of what evids between the actual conditions are points at the time of sampling based on assumption of uses at the time of sampling based on assumption of uses at the time of sampling points at the time of sampling points at the time of sampling points at the time of sampling based on assumption active active at the actual conditions are part of the test of the conditions of requirements theres should be according to t

RELIANCE ON INFORMATION PROVIDED.

The elaboration and conclosions contained in the Report are based on conditions in elidence at the time of ste rispections and information provided to exploit the client and others. The Report has been prepared to the scent is stell development, coulding, design or building assessment objectives and purpose as common vated by the client explorasive eding pool faith opponisor himpresentations information and matrix borns and all eptence escons by the any definiency impostant or maniformations information and matrix borns and all eptence escons by the any definiency impostant or maniformations information and matrix borns and all eptence escons by the maniformation of the object and representations information. Unless specifications there is a manifold manifold of the control of the borns of persons providing information. Unless specification stated otherwise. The applies of the object and reliability of the findings recommendations and getters or opinions expressed in the Nevot all applies of the effect that there has been no material alteration to organize the manifold the offer half or one of the the offer the object by the theory of the theory of the offer the organize to be objected. The effect that there has been no material alteration to organize the manifold the offer half or one offer the effect.

STANDARD OF CARE

The Prepart Facilities prepared in a manner consistent with the degree of care and entrevenues to be spreasing Parapharts openfly practicing under similar or unstances and locale. No other carriant respresses on operations Cade operas specifically stated otherwise, the treport does not contain erricommental consulting active.

COMPLETE REPORT

A consider a recordendate and files whether electronic or otherwise ingenerated as part of the assignment for part of the trepost. The content includes clubbe not limited to the terms of reference grant to ever the constr consider considered between explained the clubbe reports proposale or down werts prevaled to ever for the construction whether effective interview of the trepost in order to proposale or down werts or exact the ever records of each of the construction with the effective the trepost in order to propose the trepost of the explanation of each of the records of each of the trepost with the effective trepost in the trepost in order to propose the trepost of the explanation of each of the explanation of the trepost records of the trepost of the trepost.